
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3499811/publications.pdf Version: 2024-02-01

PILAD LISBONA

#	Article	IF	CITATIONS
1	Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 2017, 69, 292-312.	8.2	475
2	The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Applied Energy, 2016, 162, 787-807.	5.1	286
3	Optimizing make-up flow in a CO2 capture system using CaO. Chemical Engineering Journal, 2009, 147, 252-258.	6.6	112
4	Integration of Carbonate CO ₂ Capture Cycle and Coal-Fired Power Plants. A Comparative Study for Different Sorbents. Energy & Fuels, 2010, 24, 728-736.	2.5	88
5	A review on CO2 mitigation in the Iron and Steel industry through Power to X processes. Journal of CO2 Utilization, 2021, 46, 101456.	3.3	83
6	Energy penalty reduction in the calcium looping cycle. International Journal of Greenhouse Gas Control, 2012, 7, 74-81.	2.3	81
7	Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants. Fuel Processing Technology, 2009, 90, 803-811.	3.7	79
8	Reduction of greenhouse gas emissions by integration of cement plants, power plants, and CO ₂ capture systems. , 2011, 1, 72-82.		75
9	Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions. Electrochimica Acta, 2007, 53, 1920-1930.	2.6	74
10	Design and analysis of heat exchanger networks for integrated Ca-looping systems. Applied Energy, 2013, 111, 690-700.	5.1	49
11	Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC/GT. International Journal of Hydrogen Energy, 2008, 33, 5755-5764.	3.8	47
12	Energy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050. Energy, 2018, 143, 900-910.	4.5	46
13	Operation of a Cyclonic Preheater in the Ca-Looping for CO ₂ Capture. Environmental Science & Technology, 2013, 47, 11335-11341.	4.6	44
14	Power to gas-oxyfuel boiler hybrid systems. International Journal of Hydrogen Energy, 2015, 40, 10168-10175.	3.8	44
15	Power to Gas–biomass oxycombustion hybrid system: Energy integration and potential applications. Applied Energy, 2016, 167, 221-229.	5.1	44
16	Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture. Applied Energy, 2013, 101, 317-322.	5.1	42
17	Power to gas-electrochemical industry hybrid systems: A case study. Applied Energy, 2017, 202, 435-446.	5.1	41
18	Future applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to Gas-Oxycombustion power plants. International Journal of Hydrogen Energy, 2017, 42, 13625-13632.	3.8	41

#	Article	IF	CITATIONS
19	Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings. Applied Energy, 2018, 228, 1032-1045.	5.1	39
20	Operation of a Mixing Seal Valve in Calcium Looping for CO ₂ Capture. Energy & Fuels, 2014, 28, 2059-2068.	2.5	28
21	Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective. Energy, 2018, 159, 656-668.	4.5	28
22	Energy Assessment of Ethanol-Enhanced Steam Reforming by Means of Li ₄ SiO ₄ Carbon Capture. Energy & Fuels, 2016, 30, 1879-1886.	2.5	26
23	Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid. Applied Energy, 2022, 309, 118462.	5.1	24
24	Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants. Energy, 2021, 220, 119715.	4.5	21
25	A systematic approach for high temperature looping cycles integration. Fuel, 2014, 127, 4-12.	3.4	19
26	Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage. Renewable Energy, 2020, 156, 1019-1027.	4.3	19
27	Calcium looping as chemical energy storage in concentrated solar power plants: Carbonator modelling and configuration assessment. Applied Thermal Engineering, 2020, 172, 115186.	3.0	19
28	Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants. Energy, 2021, 225, 120306.	4.5	18
29	Using the second law of thermodynamic to improve CO2 capture systems. Energy Procedia, 2011, 4, 1043-1050.	1.8	17
30	Renewable energy sources and power-to-gas aided cogeneration for non-residential buildings. Energy, 2019, 181, 226-238.	4.5	17
31	Techno-economic feasibility of power to gas–oxy-fuel boiler hybrid system under uncertainty. International Journal of Hydrogen Energy, 2019, 44, 9505-9516.	3.8	17
32	Syngas Production From the Reforming of Typical Biogas Compositions in an Inert Porous Media Reactor. Frontiers in Chemistry, 2020, 8, 145.	1.8	17
33	Techno-economic assessment of an industrial carbon capture hub sharing a cement rotary kiln as sorbent regenerator. International Journal of Greenhouse Gas Control, 2021, 112, 103524.	2.3	16
34	High-temperature fuel cells for fresh water production. Desalination, 2005, 182, 471-482.	4.0	15
35	Efficiency and Energy Analysis of Power Plants with Amineâ€Impregnated Solid Sorbents CO ₂ Capture. Energy Technology, 2018, 6, 1649-1659.	1.8	14
36	Performance of MnCl2 doped magnetic iron-carbon sorbent on mercury removal from flue gas: The effect of O2 and SO2. Fuel, 2021, 285, 119064.	3.4	14

#	Article	IF	CITATIONS
37	Heat integration of alternative Ca-looping configurations for CO2 capture. Energy, 2016, 116, 956-962.	4.5	11
38	Combined carbon capture cycles: An opportunity for size and energy penalty reduction. International Journal of Greenhouse Gas Control, 2019, 88, 290-298.	2.3	11
39	Lab-scale experimental tests of power to gas-oxycombustion hybridization: System design and preliminary results. Energy, 2021, 226, 120375.	4.5	11
40	Avoidance of partial load operation at coal-fired power plants by storing nuclear power through power to gas. International Journal of Hydrogen Energy, 2019, 44, 26063-26075.	3.8	10
41	Reducing cycling costs in coal fired power plants through power to hydrogen. International Journal of Hydrogen Energy, 2020, 45, 25838-25850.	3.8	10
42	Energy Integration of High and Low Temperature Solid Sorbents for CO2 Capture. Energy Procedia, 2017, 114, 2380-2389.	1.8	8
43	Evaluation of Synergies of a Biomass Power Plant and a Biogas Station with a Carbon Capture System. Energies, 2021, 14, 908.	1.6	7
44	Improved Flexibility and Economics of Combined Cycles by Power to Gas. Frontiers in Energy Research, 2020, 8, .	1.2	6
45	Synthetic natural gas production in a 1ÂkW reactor using Ni–Ce/Al2O3 and Ru–Ce/Al2O3: Kinetics, catalyst degradation and process design. Energy, 2022, 256, 124720.	4.5	6
46	Ab initio investigations of the C2F4S isomers and of their interconversions. Journal of Fluorine Chemistry, 2003, 124, 99-104.	0.9	5
47	Carbonate looping cycle for CO2 capture: Hydrodynamic of complex CFB systems. Energy Procedia, 2011, 4, 410-416.	1.8	5
48	Comparative study of optimized purge flow in a CO2 capture system using different sorbents. Energy Procedia, 2009, 1, 1359-1366.	1.8	4
49	A PDE model for microscopic simulation of solid oxide fuel cells. Journal of Power Sources, 2012, 201, 184-195.	4.0	3
50	Power to Gas technology under Spanish Future Energy Scenario. Energy Procedia, 2017, 114, 6880-6885.	1.8	3
51	Integration of Amine Scrubbing and Power to Gas. , 2020, , 109-135.		3
52	Integration of CO2 capture and conversion. , 2020, , 503-522.		2
53	The Role of Energy Storage and Carbon Capture in Electricity Markets. , 2020, , 1-37.		1

54 Integration of Power to Gas and Carbon Capture. , 2020, , 39-60.

1

#	Article	IF	CITATIONS
55	Thermodynamic Analysis of a SOFC Aystem for CHP Applications: Influence of Operation Parameters on Global Efficiency. ECS Transactions, 2007, 7, 1811-1820.	0.3	0
56	Oriented-Control Lumped Model of a SOFC Stack: Thermal and Electrochemical Response to External Perturbations. ECS Transactions, 2007, 7, 1995-2003.	0.3	0
57	Energy and exergy pertaining toÂsolid looping cycles. , 2015, , 15-38.		Ο
58	Energy Intensity Reduction of Ca-Looping CO2 Capture by Applying Mixing Loop Seals and Cyclonic Systems. International Journal of Chemical Reactor Engineering, 2015, 13, 523-532.	0.6	0
59	FROM TERMOGRAF TO THERMONATOR: DESIGN AND DEVELOPMENT OF AN APP FOR E-LEARNING BASED ON PROBLEMS IN THE FIELD OF THERMAL ENGINEERING. EDULEARN Proceedings, 2019, , .	0.0	0
60	ENHANCING THE ACQUISITION OF COMPETENCES THROUGH THE FLIPPED CLASSROOM MODEL. , 2019, , .		0
61	Status Review of PtG-CCU Hybridization. , 2020, , 61-84.		0