
Rachel Golub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3499737/publications.pdf Version: 2024-02-01

PACHEL COLUR

#	Article	IF	CITATIONS
1	Signaling Pathways Tuning Innate Lymphoid Cell Response to Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 846923.	2.2	5
2	A wave of bipotent T/ILC-restricted progenitors shapes the embryonic thymus microenvironment in a time-dependent manner. Blood, 2021, 137, 1024-1036.	0.6	32
3	CXCR6 deficiency impairs cancer vaccine efficacy and CD8 ⁺ resident memory T-cell recruitment in head and neck and lung tumors. , 2021, 9, e001948.		41
4	The Notch signaling pathway involvement in innate lymphoid cell biology. Biomedical Journal, 2021, 44, 133-143.	1.4	17
5	Macrophageâ€fibroblast circuits in the spleen. Immunological Reviews, 2021, 302, 104-125.	2.8	19
6	The interplay between innate lymphoid cells and T cells. Mucosal Immunology, 2020, 13, 732-742.	2.7	10
7	Distinct Waves from the Hemogenic Endothelium Give Rise to Layered Lymphoid Tissue Inducer Cell Ontogeny. Cell Reports, 2020, 32, 108004.	2.9	33
8	Tbet promotes CXCR6 expression in immature natural killer cells and natural killer cell egress from the bone marrow. Immunology, 2020, 161, 28-38.	2.0	6
9	Maintenance of Type 2 Response by CXCR6-Deficient ILC2 in Papain-Induced Lung Inflammation. International Journal of Molecular Sciences, 2019, 20, 5493.	1.8	11
10	Natural Killer Cells and Type 1 Innate Lymphoid Cells Are New Actors in Non-alcoholic Fatty Liver Disease. Frontiers in Immunology, 2019, 10, 1192.	2.2	47
11	New Molecular Insights into Immune Cell Development. Annual Review of Immunology, 2019, 37, 497-519.	9.5	31
12	An Id2RFP-Reporter Mouse Redefines Innate Lymphoid Cell Precursor Potentials. Immunity, 2019, 50, 1054-1068.e3.	6.6	110
13	<scp>CCR</scp> 10 ⁺ <scp>ILC</scp> 2s with <scp>ILC</scp> 1â€like properties exhibit a protective function in severe allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 933-943.	2.7	22
14	Abstract A172: Cxcr6-deficiency impairs cancer vaccine efficacy and resident memory CD8+ T-cells recruitment in tumor. , 2019, , .		0
15	Origin and Immunological Functions of Spleen Stromal Cells. Trends in Immunology, 2018, 39, 503-514.	2.9	49
16	The Notch Signaling Pathway Is Balancing Type 1 Innate Lymphoid Cell Immune Functions. Frontiers in Immunology, 2018, 9, 1252.	2.2	28
17	Asynchronous lineage priming determines commitment to T cell and B cell lineages in fetal liver. Nature Immunology, 2017, 18, 1139-1149.	7.0	26
18	Single-cell Gene Expression Using Multiplex RT-qPCR to Characterize Heterogeneity of Rare Lymphoid Populations. Journal of Visualized Experiments, 2017, , .	0.2	13

RACHEL GOLUB

#	Article	IF	CITATIONS
19	Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Science Signaling, 2016, 9, ra45.	1.6	70
20	The Heterogeneity of Ly6Chi Monocytes Controls Their Differentiation into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells. Immunity, 2016, 45, 1205-1218.	6.6	237
21	HLA-Fatal attraction. Nature Immunology, 2016, 17, 1012-1014.	7.0	3
22	Evidence of innate lymphoid cell redundancy in humans. Nature Immunology, 2016, 17, 1291-1299.	7.0	260
23	Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling. Cell Reports, 2016, 14, 1500-1516.	2.9	75
24	Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue–inducer cell lineage. Nature Immunology, 2016, 17, 269-276.	7.0	129
25	Fetal B Cell Development. , 2016, , 46-51.		0
26	<i>Science Signaling</i> Podcast for 3 May 2016: Innate lymphoid cell plasticity. Science Signaling, 2016, 9, pc10.	1.6	1
27	CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors. Mediators of Inflammation, 2015, 2015, 1-15.	1.4	44
28	Osteogenic Potential of Mesenchymal Stromal Cells Contributes to Primary Myelofibrosis. Cancer Research, 2015, 75, 4753-4765.	0.4	41
29	Endogenous TGF-beta1 Mediated Osteogenic Impairment of Medullar Mesenchymal Stromal Cells in Primary Myelofibrosis. Blood, 2014, 124, 1873-1873.	0.6	0
30	Embryonic hematopoiesis. Blood Cells, Molecules, and Diseases, 2013, 51, 226-231.	0.6	89
31	RANKL Induces Organized Lymph Node Growth by Stromal Cell Proliferation. Journal of Immunology, 2012, 188, 1245-1254.	0.4	40
32	Notch signaling is necessary for adult, but not fetal, development of RORÎ ³ t+ innate lymphoid cells. Nature Immunology, 2011, 12, 949-958.	7.0	216
33	Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. Journal of Leukocyte Biology, 2008, 84, 152-161.	1.5	36
34	Identification of CD4int progenitors in mouse fetal spleen, a source of resident lymphoid cells. Journal of Leukocyte Biology, 2008, 83, 1145-1154.	1.5	13
35	Fetal spleen stroma drives macrophage commitment. Development (Cambridge), 2006, 133, 3619-3628.	1.2	38
36	Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 134-139.	3.3	253

RACHEL GOLUB

#	Article	IF	CITATIONS
37	Early expression of two TdT isoforms in the hematopoietic system of the Mexican axolotl. Immunogenetics, 2004, 56, 204-13.	1.2	15
38	Superantigen-Induced TCR α Locus Secondary Rearrangement: Role in Tolerance Induction. Journal of Immunology, 2002, 168, 3259-3265.	0.4	27
39	Vα gene replacement in a TCRα knock-in mouse. European Journal of Immunology, 2001, 31, 2919-2925.	1.6	8
40	VH Gene Replacement in Thymocytes. Journal of Immunology, 2001, 166, 855-860.	0.4	8
41	Specific antibody production by VH-gene replacement. European Journal of Immunology, 2000, 30, 2404-2411.	1.6	10
42	Evolution of the recombination signal sequences in the Ig heavy-chain variable region locus of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11415-11420.	3.3	25
43	Specific antibody production by VH-gene replacement. , 2000, 30, 2404.		1
44	The role of components of recombination signal sequences in immunoglobulin gene segment usage: a V81x model. Nucleic Acids Research, 1999, 27, 2304-2309.	6.5	31
45	VH gene replacement occurs in the spleen and bone marrow of non-autoimmune quasi-monoclonal mice. European Journal of Immunology, 1998, 28, 3362-3370.	1.6	32
46	Structure and diversity of the heavy chain VDJ junctions in the developing Mexican axolotl. Immunogenetics, 1997, 46, 402-409.	1.2	29