Ivan Hapala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3499390/publications.pdf

Version: 2024-02-01

759055 99684		996849
578	12	15
citations	h-index	g-index
15	15	879
docs citations	times ranked	citing authors
	citations 15	578 12 citations h-index 15 15

#	Article	IF	CITATIONS
1	Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biology of the Cell, 2011, 103, 271-285.	0.7	94
2	Effect of Lipid Particle Biogenesis on the Subcellular Distribution of Squalene in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 6127-6133.	1.6	68
3	Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy, 2003, 47, 3890-3900.	1.4	62
4	Squalene epoxidase as a target for manipulation of squalene levels in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, 310-323.	1.1	54
5	The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: Dehydroergosterol fluorescence study. Biochemical and Biophysical Research Communications, 2011, 404, 233-238.	1.0	46
6	Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 2001, 197, 41-45.	0.7	43
7	Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochemical and Biophysical Research Communications, 2003, 309, 666-671.	1.0	43
8	Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis. Biochemical and Biophysical Research Communications, 2016, 469, 1123-1128.	1.0	41
9	Characterization of Squalene Epoxidase of Saccharomyces cerevisiae by Applying Terbinafine-Sensitive Variants. Antimicrobial Agents and Chemotherapy, 2007, 51, 275-284.	1.4	36
10	Squalene lipotoxicity in a lipid dropletâ€less yeast mutant is linked to plasma membrane dysfunction. Yeast, 2020, 37, 45-62.	0.8	23
11	Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis. FEMS Microbiology Letters, 2002, 206, 121-125.	0.7	22
12	Baker's Yeast Deficient in Storage Lipid Synthesis Uses <i>cis</i> â€Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity. Lipids, 2015, 50, 621-630.	0.7	18
13	Biosynthetic Approaches to Squalene Production: The Case of Yeast. Methods in Molecular Biology, 2017, 1494, 95-106.	0.4	12
14	Mutations in the nucleotideâ€binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast. Yeast, 2020, 37, 5-14.	0.8	8
15	Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids, 2020, 55, 513-535.	0.7	8