Kostas Pantopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3499024/publications.pdf

Version: 2024-02-01

115 papers 9,356 citations

50244 46 h-index 94 g-index

118 all docs

118 docs citations

118 times ranked

11531 citing authors

#	Article	IF	CITATIONS
1	Iron metabolism and toxicity. Toxicology and Applied Pharmacology, 2005, 202, 199-211.	1.3	856
2	Regulation of cellular iron metabolism. Biochemical Journal, 2011, 434, 365-381.	1.7	795
3	Mechanisms of Mammalian Iron Homeostasis. Biochemistry, 2012, 51, 5705-5724.	1.2	465
4	Iron Metabolism and the IRE/IRP Regulatory System: An Update. Annals of the New York Academy of Sciences, 2004, 1012, 1-13.	1.8	418
5	Iron homeostasis and oxidative stress: An intimate relationship. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118535.	1.9	402
6	Regulation of iron transport and the role of transferrin. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 188-202.	1.1	383
7	Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway EMBO Journal, 1993, 12, 3651-3657.	3.5	359
8	Rapid responses to oxidative stress mediated by iron regulatory protein EMBO Journal, 1995, 14, 2917-2924.	3.5	306
9	Oxidative Stress and Iron Homeostasis: Mechanistic and Health Aspects. Critical Reviews in Clinical Laboratory Sciences, 2008, 45, 1-23.	2.7	276
10	Alcohol Metabolism-mediated Oxidative Stress Down-regulates Hepcidin Transcription and Leads to Increased Duodenal Iron Transporter Expression. Journal of Biological Chemistry, 2006, 281, 22974-22982.	1.6	265
11	The IRP/IRE system in vivo: insights from mouse models. Frontiers in Pharmacology, 2014, 5, 176.	1.6	254
12	Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1267-1271.	3.3	228
13	Nitric Oxide and Oxidative Stress (H ₂ O ₂) Control Mammalian Iron Metabolism by Different Pathways. Molecular and Cellular Biology, 1996, 16, 3781-3788.	1.1	195
14	Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4925-4930.	3.3	188
15	Chronic hepatitis C and liver fibrosis. World Journal of Gastroenterology, 2014, 20, 11033.	1.4	178
16	Small-Molecule Inhibitors of HIF-2a Translation Link Its 5′UTR Iron-Responsive Element to Oxygen Sensing. Molecular Cell, 2008, 32, 838-848.	4.5	175
17	Differences in the Regulation of Iron Regulatory Protein-1 (IRP-1) by Extra- and Intracellular Oxidative Stress. Journal of Biological Chemistry, 1997, 272, 9802-9808.	1.6	154
18	Iron-Mediated Degradation of IRP2, an Unexpected Pathway Involving a 2-Oxoglutarate-Dependent Oxygenase Activity. Molecular and Cellular Biology, 2004, 24, 954-965.	1.1	117

#	Article	IF	CITATIONS
19	Activation of iron regulatory protein-1 by oxidative stress in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10559-10563.	3.3	117
20	IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2 \hat{l}_{\pm} mRNA translation. Blood, 2013, 122, 1658-1668.	0.6	114
21	Basics and principles of cellular and systemic iron homeostasis. Molecular Aspects of Medicine, 2020, 75, 100866.	2.7	110
22	Modulation of Cellular Iron Metabolism by Hydrogen Peroxide. Journal of Biological Chemistry, 2001, 276, 19738-19745.	1.6	107
23	Human Cytoplasmic Aconitase (Iron Regulatory Protein 1) Is Converted into Its [3Fe-4S] Form by Hydrogen Peroxide in Vitro but Is Not Activated for Iron-responsive Element Binding. Journal of Biological Chemistry, 1999, 274, 21625-21630.	1.6	104
24	Pharmacological Targeting of the Hepcidin/Ferroportin Axis. Frontiers in Pharmacology, 2016, 7, 160.	1.6	100
25	Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radical Biology and Medicine, 2022, 180, 95-107.	1.3	97
26	Iron Inactivates the RNA Polymerase NS5B and Suppresses Subgenomic Replication of Hepatitis C Virus. Journal of Biological Chemistry, 2005, 280, 9049-9057.	1.6	95
27	HOâ€1â€mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues. Journal of Neurochemistry, 2009, 109, 776-791.	2.1	87
28	Systemic iron homeostasis and erythropoiesis. IUBMB Life, 2017, 69, 399-413.	1.5	82
29	IRP1 Activation by Extracellular Oxidative Stress in the Perfused Rat Liver. Journal of Biological Chemistry, 2001, 276, 23192-23196.	1.6	79
30	Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radical Biology and Medicine, 2005, 38, 276-285.	1.3	77
31	Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood, 2019, 133, 344-355.	0.6	71
32	Myeloperoxidase-derived Hypochlorous Acid Antagonizes the Oxidative Stress-mediated Activation of Iron Regulatory Protein 1. Journal of Biological Chemistry, 2003, 278, 40542-40549.	1.6	70
33	Iron-Dependent Degradation of Apo-IRP1 by the Ubiquitin-Proteasome Pathway. Molecular and Cellular Biology, 2007, 27, 2423-2430.	1.1	68
34	Inactivation of Both RNA Binding and Aconitase Activities of Iron Regulatory Protein-1 by Quinone-induced Oxidative Stress. Journal of Biological Chemistry, 1999, 274, 6219-6225.	1.6	65
35	Hepcidin Therapeutics. Pharmaceuticals, 2018, 11, 127.	1.7	65
36	Formulation and In-Vitro Characterization of Chitosan-Nanoparticles Loaded with the Iron Chelator Deferoxamine Mesylate (DFO). Pharmaceutics, 2020, 12, 238.	2.0	65

#	Article	IF	CITATIONS
37	Inherited Disorders of Iron Overload. Frontiers in Nutrition, 2018, 5, 103.	1.6	63
38	Iron inhibits replication of infectious hepatitis C virus in permissive Huh7.5.1 cells. Journal of Hepatology, 2010, 53, 995-999.	1.8	62
39	Tumorigenic Properties of Iron Regulatory Protein 2 (IRP2) Mediated by Its Specific 73-Amino Acids Insert. PLoS ONE, 2010, 5, e10163.	1.1	60
40	Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood, 2018, 132, 1829-1841.	0.6	52
41	Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis, 2006, 28, 785-791.	1.3	51
42	In vivo tumor growth is inhibited by cytosolic iron deprivation caused by the expression of mitochondrial ferritin. Blood, 2006, 108, 2428-2434.	0.6	49
43	Conditional disruption of mouse HFE2 gene: Maintenance of systemic iron homeostasis requires hepatic but not skeletal muscle hemojuvelin. Hepatology, 2011, 54, 1800-1807.	3.6	49
44	Nitric oxide and the post-transcriptional control of cellular iron traffic. Trends in Cell Biology, 1994, 4, 82-86.	3.6	48
45	Conditional Derepression of Ferritin Synthesis in Cells Expressing a Constitutive IRP1 Mutant. Molecular and Cellular Biology, 2002, 22, 4638-4651.	1.1	48
46	Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics, 2011, 3, 971.	1.0	48
47	Unregulated brain iron deposition in transgenic mice overâ€expressing <i><scp>HMOX</scp>1</i> in the astrocytic compartment. Journal of Neurochemistry, 2012, 123, 325-336.	2.1	47
48	A Phosphomimetic Mutation at Ser-138 Renders Iron Regulatory Protein 1 Sensitive to Iron-Dependent Degradation. Molecular and Cellular Biology, 2003, 23, 6973-6981.	1.1	46
49	Sustained Hydrogen Peroxide Induces Iron Uptake by Transferrin Receptor-1 Independent of the Iron Regulatory Protein/Iron-responsive Element Network. Journal of Biological Chemistry, 2007, 282, 20301-20308.	1.6	44
50	elF2 \hat{l}_{\pm} Kinase PKR Modulates the Hypoxic Response by Stat3-Dependent Transcriptional Suppression of HIF-1 \hat{l}_{\pm} . Cancer Research, 2010, 70, 7820-7829.	0.4	44
51	Differences in activation of mouse hepcidin by dietary iron and parenterally administered iron dextran: compartmentalization is critical for iron sensing. Journal of Molecular Medicine, 2013, 91, 95-102.	1.7	44
52	Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. Scientific Reports, 2019, 9, 4668.	1.6	43
53	Redox control of iron regulatory proteins. Redox Report, 2002, 7, 15-22.	1.4	42
54	Expression of the subgenomic hepatitis C virus replicon alters iron homeostasis in Huh7 cells. Journal of Hepatology, 2007, 47, 12-22.	1.8	38

#	Article	IF	CITATIONS
55	Mice are poor heme absorbers and do not require intestinal Hmox1 for dietary heme iron assimilation. Haematologica, 2015, 100, e334-e337.	1.7	38
56	Function of the hemochromatosis protein HFE: Lessons from animal models. World Journal of Gastroenterology, 2008, 14, 6893.	1.4	38
57	The prolyl 4-hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate generates effective iron deficiency in cultured cells. FEBS Letters, 2002, 529, 309-312.	1.3	34
58	Nitric Oxide Inhibits the Degradation of IRP2. Molecular and Cellular Biology, 2005, 25, 1347-1353.	1.1	34
59	A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv ^{â^'/â^'} mice. American Journal of Physiology - Renal Physiology, 2015, 308, G251-G261.	1.6	34
60	Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis. Molecular cloning of two ferritin subunits and two iron-regulatory proteins (IRP) reveals evolutionary conservation of the iron-regulatory element (IRE)/IRP regulatory system. FEBS Journal, 1998, 254, 223-229.	0.2	32
61	Sodium Nitroprusside Promotes IRP2 Degradation via an Increase in Intracellular Iron and in the Absence of S Nitrosylation at C178. Molecular and Cellular Biology, 2006, 26, 1948-1954.	1.1	32
62	Hfe and Hjv exhibit overlapping functions for iron signaling to hepcidin. Journal of Molecular Medicine, 2015, 93, 489-498.	1.7	32
63	Iron-Dependent Regulation of Hepcidin in Hjvâ^'/â^' Mice: Evidence That Hemojuvelin Is Dispensable for Sensing Body Iron Levels. PLoS ONE, 2014, 9, e85530.	1.1	32
64	IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochemical Journal, 2005, 388, 143-150.	1.7	30
65	Iron regulatory and bactericidal properties of human recombinant hepcidin expressed in Pichia pastoris. Biochimie, 2008, 90, 726-735.	1.3	30
66	Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a \hat{l}^2 -thalassemia mouse model. Blood, 2018, 131, 236-246.	0.6	30
67	[32] Activation of iron regulatory protein-1 by oxidative stress. Methods in Enzymology, 2002, 348, 324-337.	0.4	27
68	Redox control of iron regulatory protein 2 stability. FEBS Letters, 2011, 585, 687-692.	1.3	27
69	Regulatory Connections between Iron and Glucose Metabolism. International Journal of Molecular Sciences, 2020, 21, 7773.	1.8	26
70	The haemochromatosis protein HFE induces an apparent iron-deficient phenotype in H1299 cells that is not corrected by co-expression of beta2-microglobulin. Biochemical Journal, 2003, 370, 891-899.	1.7	25
71	Human iron regulatory protein 2 is easily cleaved in its specific domain: consequences for the haem binding properties of the protein. Biochemical Journal, 2007, 408, 429-439.	1.7	24
72	Accelerated CCI4-Induced Liver Fibrosis in Hjv-/- Mice, Associated with an Oxidative Burst and Precocious Profibrogenic Gene Expression. PLoS ONE, 2011, 6, e25138.	1.1	24

#	Article	IF	CITATIONS
73	Electrophoretic Mobility Shift Assay (EMSA) for the Study of RNA-Protein Interactions: The IRE/IRP Example. Journal of Visualized Experiments, 2014, , .	0.2	24
74	The pathway for IRP2 degradation involving 2-oxoglutarate-dependent oxygenase(s) does not require the E3 ubiquitin ligase activity of pVHL. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1743, 79-85.	1.9	22
75	Synthesis of biocompatible poly(ε-caprolactone)-block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles. International Journal of Nanomedicine, 2011, 6, 2981.	3.3	21
76	TfR2 links iron metabolism and erythropoiesis. Blood, 2015, 125, 1055-1056.	0.6	21
77	Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1 \hat{l} ±-PPAR \hat{l} 3 pathway. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	18
78	Iron-dependent degradation of IRP2 requires its C-terminal region and IRP structural integrity. BMC Molecular Biology, 2008, 9, 15.	3.0	17
79	The Role of the 5′ Untranslated Region of Eukaryotic Messenger RNAs in Translation and Its Investigation Using Antisense Technologies. Progress in Molecular Biology and Translational Science, 1994, 48, 181-238.	1.9	16
80	Hepcidin generated by hepatoma cells inhibits iron export from co-cultured THP1 monocytes. Journal of Hepatology, 2006, 44, 1125-1131.	1.8	15
81	Iron absorption and distribution in TNFî"ARE/+ mice, a model of chronic inflammation. Journal of Trace Elements in Medicine and Biology, 2010, 24, 58-66.	1.5	15
82	Alternative ferritin mRNA translation via internal initiation. Rna, 2012, 18, 547-556.	1.6	15
83	Iron Reshapes the Gut Microbiome and Host Metabolism. Journal of Lipid and Atherosclerosis, 2021, 10, 160.	1.1	14
84	Hepatitis C Virus Infection Causes Iron Deficiency in Huh7.5.1 Cells. PLoS ONE, 2013, 8, e83307.	1.1	14
85	Nitric Oxide, Oxygen Radicals, and Iron Metabolism. , 2000, , 293-313.		13
86	Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet. PLoS ONE, 2019, 14, e0221455.	1.1	13
87	Manganese-Induced Oxidative Stress Contributes to Intestinal Lipid Deposition <i>via </i> beacetylation of PPARγ at K339 by SIRT1. Antioxidants and Redox Signaling, 2022, 37, 417-436.	2.5	13
88	Inhibition of transferrin receptor 1 transcription by a cell density response element. Biochemical Journal, 2005, 392, 383-388.	1.7	11
89	Iron overload inhibits BMP/SMAD and IL-6/STAT3 signaling to hepcidin in cultured hepatocytes. PLoS ONE, 2021, 16, e0253475.	1.1	11
90	Insights on Regulation and Function of the Iron Regulatory Protein 1 (IRP1). Hemoglobin, 2008, 32, 109-115.	0.4	10

#	Article	IF	CITATIONS
91	Tissueâ€Specific Regulation of Ferroportin in Wildâ€Type and Hjvâ€∤―Mice Following Dietary Iron Manipulations. Hepatology Communications, 2021, 5, 2139-2150.	2.0	10
92	A role for lysosomes in the turnover of human iron regulatory protein 2. International Journal of Biochemistry and Cell Biology, 2008, 40, 2826-2832.	1.2	9
93	Iron regulation of hepcidin through Hfe and Hjv: Common or distinct pathways?. Hepatology, 2015, 62, 1922-1923.	3.6	6
94	Ribonucleases of diverse specificities in rabbit brain nuclei. FEBS Journal, 1992, 207, 1045-1051.	0.2	5
95	ANP-induced decrease of iron regulatory protein activity is independent of HO-1 induction. American Journal of Physiology - Renal Physiology, 2004, 287, G518-G526.	1.6	4
96	Rat duodenal IRP1 activity and iron absorption in iron deficiency and after H2O2 perfusion. European Journal of Clinical Investigation, 2004, 34, 275-282.	1.7	4
97	Oxygen-dependent secretion of a bioactive hepcidin-GFP chimera. Biochemical and Biophysical Research Communications, 2013, 435, 540-545.	1.0	3
98	Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients. Metabolites, 2021, 11, 70.	1.3	3
99	HSF1-SELENOS pathway mediated dietary inorganic Se-induced lipogenesis via the up-regulation of PPARÎ ³ expression in yellow catfish. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194802.	0.9	3
100	NTBI unveiled by chelatable fluorescent beads. Biochemical Journal, 2014, 463, e7-e9.	1.7	2
101	Serpinb3 is Overexpressed in the Liver in Presence of Iron Overload. Journal of Investigative Medicine, 2018, 66, 32-38.	0.7	2
102	Hepatocellular heme oxygenase 1 deficiency does not affect inflammatory hepcidin regulation in mice. PLoS ONE, 2019, 14, e0219835.	1.1	2
103	Iron Metabolism and Disease. , 2010, , 351-378.		2
104	Hemojuvelin deficiency promotes liver mitochondrial dysfunction and predisposes mice to hepatocellular carcinoma. Communications Biology, 2022, 5, 153.	2.0	2
105	Reply to: Is there any association between HCV multiplication and iron induced liver injury in chronic hepatitis C?. Journal of Hepatology, 2011, 55, 236-237.	1.8	1
106	Transferrin., 2018,, 5615-5623.		1
107	Reply to: Hepatocyte iron accumulation: A new string to ribavirin's antiviral bow?. Journal of Hepatology, 2011, 55, 238.	1.8	0
108	Response to: Dietary and pharmacological factors affecting iron absorption in mice and man. Haematologica, 2016, 101, e122-e122.	1.7	0

#	Article	IF	CITATIONS
109	Liver Hormones. , 2020, , 425-444.		O
110	Iron, FRDA, and intermediary metabolism. Blood, 2021, 137, 1994-1995.	0.6	0
111	Effects of Mitochondrial Ferritin Expression on Tumor Iron Metabolism and Tumor Growth in Nude Mice Xenografts Blood, 2005, 106, 3582-3582.	0.6	0
112	Transferrin., 2016,, 1-9.		0
113	Title is missing!. , 2019, 14, e0221455.		0
114	Title is missing!. , 2019, 14, e0221455.		0
115	Title is missing!. , 2019, 14, e0221455.		0