P Murugapandiyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3498763/publications.pdf

Version: 2024-02-01

1162889 1058333 21 225 8 14 citations g-index h-index papers 21 21 21 165 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanosheet field effect transistors-A next generation device to keep Moore's law alive: An intensive study. Microelectronics Journal, 2021, 114, 105141.	1.1	50
2	Design and analysis of 30Ânm T-gate InAlN/GaN HEMT with AlGaN back-barrier for high power microwave applications. Superlattices and Microstructures, 2017, 111, 1050-1057.	1.4	31
3	DC and microwave characteristics of Lg 50 nm T-gate InAlN/AlN/GaN HEMT for future high power RF applications. AEU - International Journal of Electronics and Communications, 2017, 77, 163-168.	1.7	26
4	Switching Transient Analysis and Characterization of an E-Mode B-Doped GaN-Capped AlGaN DH-HEMT with a Freewheeling Schottky Barrier Diode (SBD). Journal of Electronic Materials, 2020, 49, 4091-4099.	1.0	16
5	Performance analysis of HfO2/InAlN/AlN/GaN HEMT with AlN buffer layer for high power microwave applications. Journal of Science: Advanced Materials and Devices, 2020, 5, 192-198.	1.5	15
6	DC and microwave characteristics of 20Ânm T-gate InAlN/GaN high electron mobility transistor for high power RF applications. Superlattices and Microstructures, 2017, 109, 725-734.	1.4	11
7	Investigation of Quaternary Barrier InAlGaN/GaN/AlGaN Double-Heterojunction High-Electron-Mobility Transistors (HEMTs) for High-Speed and High-Power Applications. Journal of Electronic Materials, 2020, 49, 524-529.	1.0	9
8	Breakdown voltage enhancement of gate field plate Al0.295Ga0.705N/GaN HEMTs. International Journal of Electronics, 2020, , 1-15.	0.9	9
9	Static and dynamic characteristics of L g 50Ânm InAlN/AlN/GaN HEMT with AlGaN back-barrier for high power millimeter wave applications. Journal of Science: Advanced Materials and Devices, 2017, 2, 515-522.	1.5	8
10	Investigation of Influence of SiN and SiO2 Passivation in Gate Field Plate Double Heterojunction Al0.3Ga0.7N/GaN/Al0.04Ga0.96N High Electron Mobility Transistors. Silicon, 0, , 1.	1.8	8
11	Influence of AIN passivation on thermal performance of AlGaN/GaN high-electron mobility transistors on sapphire substrate: A simulation study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115449.	1.7	7
12	30 nm T-gate enhancement-mode InAlN/AlN/GaN HEMT on SiC substrates for future high power RF applications. Journal of Semiconductors, 2017, 38, 084001.	2.0	6
13	Design and development of cross dipole antenna for satellite applications. Frequenz, 2020, 74, 229-237.	0.6	6
14	UWBG AlN/ \hat{I}^2 -Ga2O3 HEMT on Silicon Carbide Substrate for Low Loss Portable Power Converters and RF Applications. Silicon, 2022, 14, 11079-11087.	1.8	5
15	Influence of High-k Passivation Layer on Gate Field Plate AlGaN/GaN/AlGaN Double Heterojunction HEMT. Silicon, 2022, 14, 10437-10445.	1.8	5
16	GaN-Based High-Electron Mobility Transistors for High-Power and High-Frequency Application: A Review. Lecture Notes in Networks and Systems, 2020, , 339-348.	0.5	4
17	Investigation of ultra-scaled AlN/GaN/InGaN double heterojunction HEMT for high-frequency applications. International Journal of Electronics Letters, 2020, 8, 472-482.	0.7	3
18	60 GHz Double Deck T-Gate AlN/GaN/AlGaN HEMT for V-Band Satellites. Silicon, 2022, 14, 5941-5949.	1.8	3

#	Article	IF	CITATIONS
19	A 28-GHz Low-Loss AlGaN/GaN HEMT for TX/RX Switches in 5G Base Stations. Journal of Electronic Materials, 2022, 51, 1215-1225.	1.0	3
20	ligh-Performance poperatorname of the performance of the perf		0
21	DC and Microwave Characteristics of <i>L_g</i> 20 nm T-Gate Enhancement Mode Al _{0.5} Ga _{N.5} N High Electron Mobility Transistor for Next Generation High Power Millimeter Wave Applications. Journal of Nanoelectronics and Optoelectronics. 2018. 13. 183-189.	0.1	0