Teiichi Tanimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/349837/publications.pdf

Version: 2024-02-01

69 papers 3,153 citations

172457 29 h-index 54 g-index

71 all docs

71 docs citations

times ranked

71

2665 citing authors

#	Article	IF	CITATIONS
1	Softness sensing and learning in Drosophila larvae. Journal of Experimental Biology, 2019, 222, .	1.7	10
2	A conserved odorant binding protein is required for essential amino acid detection in Drosophila. Communications Biology, 2019, 2, 425.	4.4	21
3	Sugar Intake Elicits Intelligent Searching Behavior in Flies and Honey Bees. Frontiers in Behavioral Neuroscience, 2018, 12, 280.	2.0	21
4	Preference for and learning of amino acids in larval <i>Drosophila</i> . Biology Open, 2017, 6, 365-369.	1.2	24
5	The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 <i>Drosophila</i> larvae. Journal of Experimental Biology, 2017, 220, 2452-2475.	1.7	48
6	Pharyngeal stimulation with sugar triggers local searching behavior in <i>Drosophila</i> . Journal of Experimental Biology, 2017, 220, 3231-3237.	1.7	31
7	Genetic Variation in Taste Sensitivity to Sugars in Drosophila melanogaster. Chemical Senses, 2017, 42, 287-294.	2.0	7
8	Pavlovian Conditioning of Larval Drosophila: An Illustrated, Multilingual, Hands-On Manual for Odor-Taste Associative Learning in Maggots. Frontiers in Behavioral Neuroscience, 2017, 11, 45.	2.0	28
9	Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila. Frontiers in Systems Neuroscience, 2017, 11, 100.	2.5	19
10	Mated Drosophila melanogaster females consume more amino acids during the dark phase. PLoS ONE, 2017, 12, e0172886.	2.5	16
11	Deciphering the Genes for Taste Receptors for Fructose in Drosophila. Molecules and Cells, 2017, 40, 731-736.	2.6	5
12	Function of desiccate in gustatory sensilla of drosophila melanogaster. Scientific Reports, 2015, 5, 17195.	3.3	8
13	Learning the specific quality of taste reinforcement in larval Drosophila. ELife, 2015, 4, .	6.0	48
14	Genetic variation in food choice behaviour of amino acid-deprived Drosophila. Journal of Insect Physiology, 2014, 69, 89-94.	2.0	16
15	Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila. Journal of Biosciences, 2014, 39, 585-594.	1.1	10
16	Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2013, 430, 717-721.	2.1	20
17	Suppression of Conditioned Odor Approach by Feeding Is Independent of Taste and Nutritional Value in Drosophila. Current Biology, 2013, 23, 507-514.	3.9	33
18	Gustatory Sensing Mechanism Coding for Multiple Oviposition Stimulants in the Swallowtail Butterfly, <i>Papilio Xuthus </i> Journal of Neuroscience, 2013, 33, 914-924.	3.6	25

#	Article	IF	CITATIONS
19	C-Terminal Binding Protein (CtBP) Activates the Expression of E-Box Clock Genes with CLOCK/CYCLE in Drosophila. PLoS ONE, 2013, 8, e63113.	2.5	10
20	Taste preference for amino acids is dependent on internal nutritional state in <i>Drosophila melanogaster </i> . Journal of Experimental Biology, 2012, 215, 2827-2832.	1.7	75
21	Membrane-bound transporter controls the circadian transcription of clock genes in Drosophila. Genes To Cells, 2011, 16, 1159-1167.	1.2	27
22	Drosophila Evaluates and Learns the Nutritional Value of Sugars. Current Biology, 2011, 21, 751-755.	3.9	137
23	bHLH-ORANGE family genes regulate the expression of E-box clock genes in Drosophila. Applied Entomology and Zoology, 2011, 46, 391-397.	1.2	3
24	Identification of a Novel Gene, Anorexia, Regulating Feeding Activity via Insulin Signaling in Drosophila melanogaster. Journal of Biological Chemistry, 2011, 286, 38417-38426.	3.4	28
25	Neurophysiology of gustatory receptor neurones in Drosophila. SEB Experimental Biology Series, 2009, 63, 59-76.	0.1	3
26	A gene involved in the food preferences of larval Drosophila melanogaster. Journal of Insect Physiology, 2008, 54, 1440-1445.	2.0	11
27	Analysis of Hunger-Driven Gene Expression in the Drosophila melanogaster Larval Central Nervous System. Zoological Science, 2008, 25, 746-752.	0.7	6
28	<i>Period</i> Gene of <i>Bactrocera cucurbitae</i> (Diptera: Tephritidae) Among Strains with Different Mating Times and Sterile Insect Technique. Annals of the Entomological Society of America, 2008, 101, 1121-1130.	2.5	19
29	2S10-3 Cross-modality sensing in gustatory receptor neurons of Drosophila(2S10 Olfaction, Taste and) Tj ETQq1	1 0.78431 0.1	4 rgBT /Ove 0
30	Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons. PLoS ONE, 2008, 3, e2610.	2.5	24
31	A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes and Development, 2007, 21, 1687-1700.	5.9	150
32	An Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males. PLoS ONE, 2007, 2, e661.	2.5	125
33	Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1094-1099.	7.1	66
34	Temperature cycles driveDrosophilacircadian oscillation in constant light that otherwise induces behavioural arrhythmicity. European Journal of Neuroscience, 2005, 22, 1176-1184.	2.6	107
35	G-protein gamma subunit 1 is required for sugar reception in Drosophila. EMBO Journal, 2005, 24, 3259-3265.	7.8	42
36	An endoderm-specific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm. Developmental Biology, 2005, 278, 576-586.	2.0	56

3

#	Article	IF	CITATIONS
37	Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO Journal, 2004, 23, 659-669.	7.8	145
38	Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. Journal of Insect Physiology, 2004, 50, 479-488.	2.0	96
39	Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste inDrosophila. Journal of Neurobiology, 2004, 61, 333-342.	3.6	135
40	Development of PDF-immunoreactive cells, possible clock neurons, in the houseflyMusca domestica. Microscopy Research and Technique, 2003, 62, 103-113.	2.2	19
41	Peripheral coding of bitter taste inDrosophila. Journal of Neurobiology, 2003, 56, 139-152.	3.6	197
42	Genome-wide Transcriptional Orchestration of Circadian Rhythms inDrosophila. Journal of Biological Chemistry, 2002, 277, 14048-14052.	3.4	236
43	Differentiated Response to Sugars among Labellar Chemosensilla in Drosophila. Zoological Science, 2002, 19, 1009-1018.	0.7	145
44	Molecular Identification of a Taste Receptor Gene for Trehalose in Drosophila. Science, 2000, 289, 116-119.	12.6	51
45	DCRY is aDrosophilaphotoreceptor protein implicated in light entrainment of circadian rhythm. Genes To Cells, 1999, 4, 57-65.	1.2	73
46	<i>tim^{rit}</i> Lengthens Circadian Period in a Temperature-Dependent Manner through Suppression of PERIOD Protein Cycling and Nuclear Localization. Molecular and Cellular Biology, 1999, 19, 4343-4354.	2.3	64
47	Targeted expression of ced-3 and Ice induces programmed cell death in Drosophila. Cell Death and Differentiation, 1997, 4, 371-377.	11.2	6
48	Cell ablation by ectopic expression of cell death genes, ced-3 and Ice, in Drosophila. Development Growth and Differentiation, 1997, 39, 429-436.	1.5	9
49	TheDrosophilaSecreted Protein Argos Regulates Signal Transduction in the Ras/MAPK Pathway. Developmental Biology, 1996, 178, 13-22.	2.0	31
50	argos is required for projection of photoreceptor axons during optic lobe development in Drosophila. Developmental Dynamics, 1996, 205, 162-171.	1.8	11
51	Suppressor of Hairless, the Drosophila homologue of RBP-J.KAPPA., transactivates the neurogenic gene E(spl)m8 Japanese Journal of Genetics, 1995, 70, 505-524.	1.0	54
52	Enhancer-trap detection of expression patterns corresponding to the polar coordinate system in the imaginal discs of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1995, 204, 378-391.	1.2	3
53	Expression and Functional Analyses of the Dxpa Gene, the Drosophila Homolog of the Human Excision Repair Gene XPA. Journal of Biological Chemistry, 1995, 270, 22452-22459.	3.4	23
54	Novel tissue units of regional differentiation in the gut epithelium of Drosopbila, as revealed by P-element-mediated detection of enhancer. Roux's Archives of Developmental Biology, 1994, 203, 243-249.	1.2	35

#	Article	IF	CITATIONS
55	The Function of argos in Regulating Cell Fate Decisions during Drosophila Eye and Wing Vein Development. Developmental Biology, 1994, 164, 267-276.	2.0	73
56	Chronobiological Analysis of a New Clock Mutant, <i>Toki</i> , in <i>Drosophila Melanogaster</i> Journal of Neurogenetics, 1994, 9, 141-155.	1.4	38
57	Mutants with Delayed Cell Death of the Ptilinal Head Muscles in <i>Drosophila</i> . Journal of Neurogenetics, 1992, 8, 57-69.	1.4	9
58	Regulation of Drosophila neural development by a putative secreted protein. Differentiation, 1992, 52, 1-11.	1.9	48
59	Neurohormonal control of the mating interval in the male cricket, Gryllus bimaculatus DeGeer. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 168, 159.	1.6	11
60	Simultaneous determination of biogenic amines, their precursors and metabolites in a single brain of the cricket using high-performance liquid chromatography with amperometric detection. Biomedical Applications, 1989, 496, 39-53.	1.7	34
61	Distribution of biogenic amines in the cricket central nervous system. Analytical Biochemistry, 1988, 171, 33-40.	2.4	54
62	Suppression of inherited muscle degeneration in a Drosophila mutant by mechanical and genetical immobilizations. Journal of Neurogenetics, 1987, 4, 21-28.	1.4	3
63	Genetic approaches to the taste receptor mechanisms. Chemical Senses, 1987, 12, 285-294.	2.0	6
64	Muscle degeneration in the posteclosional development of a Drosophila mutant, abnormal proboscis extension reflex C (aperC). Developmental Biology, 1986, 117, 194-203.	2.0	15
65	3â€Hâ€YDROXYRETINAL AS A CHROMOPHORE OF <i>Drosophila melanogaster</i> VISUAL PIGMENT ANALYZED BY HIGHâ€PRESSURE LIQUID CHROMATOGRAPHY. Photochemistry and Photobiology, 1986, 43, 225-228.	2.5	28
66	Water loss through the integument in the desiccation-sensitive mutant, Parched, of Drosophila melanogaster. Journal of Insect Physiology, 1985, 31, 573-580.	2.0	18
67	Genetic dimorphism in the taste sensitivity to trehalose inDrosophila melanogaster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 147, 433-437.	1.6	132
68	Multiple receptor proteins for sweet taste inDrosophila discriminated by papain treatment. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1981, 141, 265-269.	1.6	38
69	Purification and Partial Characterization of Three Forms of α-Glucosidase from the Fruit Fly Drosophila melanogaster. Journal of Biochemistry, 1979, 85, 123-130.	1.7	31