
Kate E Dingle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3498334/publications.pdf

Version: 2024-02-01

KATE E DINCLE

#	Article	IF	CITATIONS
1	Diverse Sources of <i>C. difficile</i> Infection Identified on Whole-Genome Sequencing. New England Journal of Medicine, 2013, 369, 1195-1205.	13.9	595
2	Multilocus Sequence Typing of <i>Clostridium difficile</i> . Journal of Clinical Microbiology, 2010, 48, 770-778.	1.8	399
3	Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infectious Diseases, The, 2020, 20, 1390-1400.	4.6	336
4	Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infectious Diseases, The, 2017, 17, 411-421.	4.6	269
5	Comparative Genotyping of Campylobacter jejuni by Amplified Fragment Length Polymorphism, Multilocus Sequence Typing, and Short Repeat Sequencing: Strain Diversity, Host Range, and Recombination. Journal of Clinical Microbiology, 2003, 41, 15-26.	1.8	242
6	Molecular Characterization of <i>Campylobacter jejuni</i> Clones: A Basis for Epidemiologic Investigation. Emerging Infectious Diseases, 2002, 8, 949-955.	2.0	211
7	Characterisation of Clostridium difficile Hospital Ward–Based Transmission Using Extensive Epidemiological Data and Molecular Typing. PLoS Medicine, 2012, 9, e1001172.	3.9	202
8	Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biology, 2012, 13, R118.	13.9	199
9	Molecular Characterization of <i>Campylobacter jejuni</i> Clones: A Basis for Epidemiologic Investigation. Emerging Infectious Diseases, 2002, 8, 949-955.	2.0	192
10	Relationship Between Bacterial Strain Type, Host Biomarkers, and Mortality in Clostridium difficile Infection. Clinical Infectious Diseases, 2013, 56, 1589-1600.	2.9	191
11	Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 2014, 6, 36-52.	1.1	190
12	Sequence Typing and Comparison of Population Biology of Campylobacter coli and Campylobacter jejuni. Journal of Clinical Microbiology, 2005, 43, 340-347.	1.8	183
13	Predictors of First Recurrence of Clostridium difficile Infection: Implications for Initial Management. Clinical Infectious Diseases, 2012, 55, S77-S87.	2.9	180
14	Antibody testing for COVID-19: A report from theÂNational COVID Scientific Advisory Panel. Wellcome Open Research, 2020, 5, 139.	0.9	179
15	Clinical Clostridium difficile: Clonality and Pathogenicity Locus Diversity. PLoS ONE, 2011, 6, e19993.	1.1	150
16	Host-associated Genetic Import in <i>Campylobacter jejuni</i> . Emerging Infectious Diseases, 2007, 13, 267-272.	2.0	134
17	Real-Time Genomic Epidemiological Evaluation of Human Campylobacter Isolates by Use of Whole-Genome Multilocus Sequence Typing. Journal of Clinical Microbiology, 2013, 51, 2526-2534.	1.8	124
18	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	0.9	122

KATE E DINGLE

#	Article	IF	CITATIONS
19	Macro and Micro Diversity of Clostridium difficile Isolates from Diverse Sources and Geographical Locations. PLoS ONE, 2012, 7, e31559.	1.1	114
20	Recombinational Switching of the Clostridium difficile S-Layer and a Novel Glycosylation Gene Cluster Revealed by Large-Scale Whole-Genome Sequencing. Journal of Infectious Diseases, 2013, 207, 675-686.	1.9	93
21	<i>Campylobacter</i> infection of broiler chickens in a freeâ€range environment. Environmental Microbiology, 2008, 10, 2042-2050.	1.8	89
22	Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. PLoS ONE, 2017, 12, e0182307.	1.1	82
23	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	0.9	81
24	Clonal Nature of Campylobacter fetus as Defined by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2005, 43, 5888-5898.	1.8	79
25	A Longitudinal 6-Year Study of the Molecular Epidemiology of Clinical Campylobacter Isolates in Oxfordshire, United Kingdom. Journal of Clinical Microbiology, 2012, 50, 3193-3201.	1.8	79
26	Extended Sequence Typing of <i>Campylobacter</i> spp., United Kingdom. Emerging Infectious Diseases, 2008, 14, 1620-1622.	2.0	73
27	Mutation in a Lordsdale Norovirus Epidemic Strain as a Potential Indicator of Transmission Routes. Journal of Clinical Microbiology, 2004, 42, 3950-3957.	1.8	70
28	A Modified RNA-Seq Approach for Whole Genome Sequencing of RNA Viruses from Faecal and Blood Samples. PLoS ONE, 2013, 8, e66129.	1.1	62
29	Molecular Evidence for Dissemination of Unique Campylobacter jejuni Clones in Curaçao, Netherlands Antilles. Journal of Clinical Microbiology, 2003, 41, 5593-5597.	1.8	61
30	Wild birdâ€associated <scp><i>C</i></scp> <i>ampylobacter jejuni</i> isolates are a consistent source of human disease, in <scp>O</scp> xfordshire, <scp>U</scp> nited <scp>K</scp> ingdom. Environmental Microbiology Reports, 2015, 7, 782-788.	1.0	61
31	Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clinical Infectious Diseases, 2018, 67, 1035-1044.	2.9	60
32	Clostridium difficile Mixed Infection and Reinfection. Journal of Clinical Microbiology, 2012, 50, 142-144.	1.8	55
33	Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. ELife, 2021, 10, .	2.8	50
34	Detection of a cfr(B) Variant in German Enterococcus faecium Clinical Isolates and the Impact on Linezolid Resistance in Enterococcus spp PLoS ONE, 2016, 11, e0167042.	1.1	46
35	A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated <i>Clostridium difficile</i> PCR Ribotype 078. MBio, 2019, 10, .	1.8	46
36	Stable and Noncompetitive RNA Internal Control for Routine Clinical Diagnostic Reverse Transcription-PCR. Journal of Clinical Microbiology, 2004, 42, 1003-1011.	1.8	43

Kate E Dingle

#	Article	IF	CITATIONS
37	Ciprofloxacin-resistant campylobacteriosis in the UK. Lancet, The, 2010, 376, 1987.	6.3	39
38	Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England. Virology Journal, 2013, 10, 335.	1.4	37
39	Clostridium difficile trehalose metabolism variants are common and not associated with adverse patient outcomes when variably present in the same lineage. EBioMedicine, 2019, 43, 347-355.	2.7	35
40	Initiation of Hepatitis Delta Virus Genome Replication. Journal of Virology, 1998, 72, 4783-4788.	1.5	34
41	Molecular Epidemiology of Clostridium difficile Strains in Children Compared with That of Strains Circulating in Adults with Clostridium difficile-Associated Infection : Fig. 1 Journal of Clinical Microbiology, 2011, 49, 3994-3996.	1.8	32
42	The Complexity and Diversity of the Pathogenicity Locus in Clostridium difficile Clade 5. Genome Biology and Evolution, 2014, 6, 3159-3170.	1.1	31
43	Genetic Relationships among Reptilian and Mammalian <i>Campylobacter fetus</i> Strains Determined by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2010, 48, 977-980.	1.8	24
44	Can rapid integrated polymerase chain reaction-based diagnostics for gastrointestinal pathogens improve routine hospital infection control practice? A diagnostic study. Health Technology Assessment, 2014, 18, 1-167.	1.3	19
45	Interactions between Hepatitis Delta Virus Proteins. Journal of Virology, 2000, 74, 5509-5515.	1.5	17
46	SARS-CoV-2 antibody prevalence, titres and neutralising activity in an antenatal cohort, United Kingdom, 14 April to 15 June 2020. Eurosurveillance, 2020, 25, .	3.9	17
47	DNA Thermo-Protection Facilitates Whole-Genome Sequencing of Mycobacteria Direct from Clinical Samples. Journal of Clinical Microbiology, 2020, 58, .	1.8	14
48	Electrophoretic analysis of the ribonucleoproteins of hepatitis delta virus. Journal of Virological Methods, 1998, 75, 199-204.	1.0	11
49	Surveillance of Infection Severity: A Registry Study of Laboratory Diagnosed Clostridium difficile. PLoS Medicine, 2012, 9, e1001279.	3.9	8
50	Population Biology of Campylobacter jejuni and Related Organisms. , 0, , 27-40.		8
51	Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microbial Genomics, 2020, 6, .	1.0	8
52	Isolation, Identification, Subspecies Differentiation, and Typing of <i>Campylobacter fetus</i> . , 0, , 213-225.		5
53	Clostridium difficile in England: can we stop washing our hands? – Authors' reply. Lancet Infectious Diseases, The, 2017, 17, 478-479.	4.6	1