Lawrence D Harder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3498297/publications.pdf

Version: 2024-02-01

123 papers 11,838 citations

53 h-index 29127 104 g-index

125 all docs

125 docs citations

125 times ranked

7690 citing authors

#	Article	IF	CITATIONS
1	Behavioural responses by a bumble bee to competition with a nicheâ€constructing congener. Journal of Animal Ecology, 2022, 91, 580-592.	1.3	6
2	No statistical evidence that honey bees competitively reduced wild bee abundance in the Munich Botanic Garden—a comment on Renner et al. (2021). Oecologia, 2022, 198, 337.	0.9	1
3	Habitat effects on reproductive phenotype, pollinator behavior, fecundity, and mating outcomes of a bumble bee–pollinated herb. American Journal of Botany, 2022, 109, 470-485.	0.8	4
4	Mechanisms of Male-Male Interference during Dispersal of Orchid Pollen. American Naturalist, 2021, 197, 250-265.	1.0	4
5	The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Functional Ecology, 2021, 35, 1998-2011.	1.7	9
6	Invasive bees and their impact on agriculture. Advances in Ecological Research, 2020, 63, 49-92.	1.4	42
7	Does acoustic priming †sweeten the pot' of floral nectar?. Ecology Letters, 2020, 23, 1550-1552.	3.0	4
8	The nature of interspecific interactions and coâ€diversification patterns, as illustrated by the fig microcosm. New Phytologist, 2019, 224, 1304-1315.	3 . 5	16
9	The dynamic mosaic phenotypes of flowering plants. New Phytologist, 2019, 224, 1021-1034.	3 . 5	24
10	Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology, 2019, 56, 100-106.	1.9	99
11	The costs and benefits of pollinator dependence: empirically based simulations predict raspberry fruit quality. Ecological Applications, 2018, 28, 1215-1222.	1.8	11
12	Tracking Pollen Fates in Orchid Populations. Springer Protocols, 2018, , 227-239.	0.1	3
13	Physical tidepool characteristics affect age- and size-class distributions and site fidelity in tidepool sculpin (<i>Oligocottus maculosus</i>). Canadian Journal of Zoology, 2018, 96, 1326-1335.	0.4	5
14	Mating consequences of contrasting hermaphroditic plant sexual systems. Evolution; International Journal of Organic Evolution, 2018, 72, 2114-2128.	1.1	16
15	The Ecology of Mating and Its Evolutionary Consequences in Seed Plants. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 135-157.	3.8	137
16	Inflorescence characteristics as functionâ€valued traits: Analysis of heritability and selection on architectural effects. Journal of Systematics and Evolution, 2017, 55, 559-565.	1.6	18
17	The mating consequences of rewarding vs. deceptive pollination systems: Is there a quantity–quality tradeâ€off?. Ecological Monographs, 2017, 87, 91-104.	2.4	11
18	The population ecology of male gametophytes: the link between pollination and seed production. Ecology Letters, 2016, 19, 497-509.	3.0	36

#	Article	IF	Citations
19	Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152304.	1.2	79
20	Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral <i>Acropora millepora </i> Biological Bulletin, 2016, 230, 130-142.	0.7	32
21	Flower orientation influences the consistency of bumblebee movement within inflorescences. Annals of Botany, 2016, 118, 523-527.	1.4	6
22	Diverse ecological relations of male gametophyte populations in stylar environments. American Journal of Botany, 2016, 103, 484-497.	0.8	23
23	Evolutionary and Ecological Consequences of Multiscale Variation in Pollen Receipt for Seed Production. American Naturalist, 2015, 185, E14-E29.	1.0	21
24	Using a "time machine―to test for local adaptation of aquatic microbes to temporal and spatial environmental variation. Evolution; International Journal of Organic Evolution, 2015, 69, 136-145.	1.1	13
25	The consequences of demandâ€driven seed provisioning for sexual differences in reproductive investment in <i>Thalictrum occidentale</i> (Ranunculaceae). Journal of Ecology, 2015, 103, 269-280.	1.9	10
26	Consequences of Multiple Inflorescences and Clonality for Pollinator Behavior and Plant Mating. American Naturalist, 2014, 184, 580-592.	1.0	30
27	When mutualism goes bad: densityâ€dependent impacts of introduced bees on plant reproduction. New Phytologist, 2014, 204, 322-328.	3.5	95
28	The interplay between inflorescence development and function as the crucible of architectural diversity. Annals of Botany, 2013, 112, 1477-1493.	1.4	107
29	Sterile flowers increase pollinator attraction and promote female success in the Mediterranean herb Leopoldia comosa. Annals of Botany, 2013, 111, 103-111.	1.4	20
30	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
31	The evolution of floral nectaries in Disa (Orchidaceae: Disinae): recapitulation or diversifying innovation?. Annals of Botany, 2013, 112, 1303-1319.	1.4	16
32	Demandâ€driven resource investment in annual seed production by a perennial angiosperm precludes resource limitation. Ecology, 2013, 94, 51-61.	1.5	14
33	Bumble-bee learning selects for both early and long flowering in food-deceptive plants. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1538-1543.	1.2	26
34	Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees. Annals of Botany, 2012, 109, 761-772.	1.4	45
35	Effects of defoliation and shading on the physiological cost of reproduction in silky locoweed Oxytropis sericea. Annals of Botany, 2012, 109, 237-246.	1.4	13
36	Phenological associations of within―and amongâ€plant variation in gender with floral morphology and integration in protandrous <i>Delphinium glaucum</i>). Journal of Ecology, 2012, 100, 1029-1038.	1.9	37

#	Article	IF	Citations
37	HOW DEPRESSED? ESTIMATES OF INBREEDING EFFECTS DURING SEED DEVELOPMENT DEPEND ON REPRODUCTIVE CONDITIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 1375-1386.	1.1	10
38	Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5909-5914.	3.3	310
39	Mammal pollinators lured by the scent of a parasitic plant. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2303-2310.	1.2	61
40	VARIATIONS ON A THEME-THE ECOLOGY AND EVOLUTION OF WITHIN-PLANT DIVERSITY. Evolution; International Journal of Organic Evolution, 2010, 64, 2184.	1.1	0
41	Native pollen thieves reduce the reproductive success of a hermaphroditic plant, Aloe maculata. Ecology, 2010, 91, 1693-1703.	1.5	53
42	Floral adaptation and diversification under pollen limitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 529-543.	1.8	138
43	Geographic variation in the growth of domesticated honey-bee stocks. Communicative and Integrative Biology, 2009, 2, 464-466.	0.6	23
44	Variation in Pollination: Causes and Consequences for Plant Reproduction. American Naturalist, 2009, 174, 382-398.	1.0	54
45	The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 2009, 19, 915-918.	1.8	794
46	Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biological Reviews, 2009, 84, 259-276.	4.7	178
47	Questions about floral (dis)integration. New Phytologist, 2009, 183, 247-248.	3.5	17
48	Darwin's beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytologist, 2009, 183, 530-545.	3.5	340
49	The truth about honeybees. New Scientist, 2009, 204, 26-27.	0.0	3
50	EFFECTS OF REPRODUCTIVE COMPENSATION, GAMETE DISCOUNTING AND REPRODUCTIVE ASSURANCE ON MATING-SYSTEM DIVERSITY IN HERMAPHRODITES. Evolution; International Journal of Organic Evolution, 2008, 62, 157-172.	1.1	56
51	Aloe inconspicua: The first record of an exclusively insect-pollinated aloe. South African Journal of Botany, 2008, 74, 606-612.	1.2	32
52	Function and Evolution of Aggregated Pollen in Angiosperms. International Journal of Plant Sciences, 2008, 169, 59-78.	0.6	148
53	Variation in ovule and seed size and associated size–number tradeâ€offs in angiosperms. American Journal of Botany, 2007, 94, 840-846.	0.8	34
54	Evolution and Development of Inflorescence Architectures. Science, 2007, 316, 1452-1456.	6.0	333

#	Article	IF	Citations
55	Flies (Diptera) as pollinators of two dioecious plants: behaviour and implications for plant mating. Canadian Entomologist, 2007, 139, 235-246.	0.4	18
56	EXPANDING THE LIMITS OF THE POLLEN-LIMITATION CONCEPT: EFFECTS OF POLLEN QUANTITY AND QUALITY. Ecology, 2007, 88, 271-281.	1.5	409
57	Manipulation of Bee Behavior by Inflorescence Architecture and Its Consequences for Plant Mating. American Naturalist, 2006, 167, 496-509.	1.0	43
58	The size of individual Delphinium flowers and the opportunity for geitonogamous pollination. Functional Ecology, 2006, 20, 1115-1123.	1.7	37
59	The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytologist, 2005, 165, 45-53.	3.5	49
60	Floral and inflorescence effects on variation in pollen removal and seed production among six legume species. Functional Ecology, 2005, 19, 245-254.	1.7	119
61	Pollen fates and the limits on male reproductive success in an orchid population. Biological Journal of the Linnean Society, 2005, 86, 175-190.	0.7	85
62	New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica, 2005, 143, 51-65.	0.6	28
63	Functional associations of floret and inflorescence traits among grass species. American Journal of Botany, 2005, 92, 1862-1870.	0.8	37
64	Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2651-2657.	1.2	121
65	Heteromorphic Incompatibility and Efficiency of Pollination in Two Distylous Pentanisia Species (Rubiaceae). Annals of Botany, 2004, 95, 389-399.	1.4	70
66	Beyond floricentrism: The pollination function of inflorescences. Plant Species Biology, 2004, 19, 137-148.	0.6	117
67	The functional significance of synchronous protandry in Alstroemeria aurea. Functional Ecology, 2004, 18, 467-474.	1.7	15
68	Inflorescence architecture and wind pollination in six grass species. Functional Ecology, 2004, 18, 851-860.	1.7	58
69	CORRELATED EVOLUTION OF FLORAL MORPHOLOGY AND MATING-TYPE FREQUENCIES IN A SEXUALLY POLYMORPHIC PLANT. Evolution; International Journal of Organic Evolution, 2004, 58, 964-975.	1.1	56
70	Reproductive Uncertainty and the Relative Competitiveness of Simultaneous Hermaphroditism versus Dioecy. American Naturalist, 2003, 162, 220-241.	1.0	74
71	The effects of floral design and display on pollinator economics and pollen dispersal., 2001,, 297-317.		48
72	GENDER VARIATION INSAGITTARIA LATIFOLIA(ALISMATACEAE): IS SIZE ALL THAT MATTERS?. Ecology, 2001, 82, 360-373.	1.5	75

#	Article	IF	CITATIONS
73	Direct and indirect responses to selection on pollen size in Brassica rapa L Journal of Evolutionary Biology, 2001, 14, 456-468.	0.8	71
74	Gender Variation in Sagittaria latifolia (Alismataceae): Is Size All That Matters?. Ecology, 2001, 82, 360.	1.5	29
7 5	VESTIGIAL ORGANS AS OPPORTUNITIES FOR FUNCTIONAL INNOVATION: THE EXAMPLE OF THE PENSTEMON STAMINODE. Evolution; International Journal of Organic Evolution, 2001, 55, 477.	1.1	37
76	VESTIGIAL ORGANS AS OPPORTUNITIES FOR FUNCTIONAL INNOVATION: THE EXAMPLE OF THE PENSTEMON STAMINODE. Evolution; International Journal of Organic Evolution, 2001, 55, 477-487.	1.1	6
77	The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional re-invention. American Journal of Botany, 2000, 87, 1367-1384.	0.8	122
78	The mating consequences of sexual segregation within inflorescences of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 315-320.	1.2	124
79	THE RESPONSE OF LARVAL GROWTH RATE TO TEMPERATURE IN THREE SPECIES OF COENAGRIONID DRAGONFLIES WITH SOME COMMENTS ON <i>LESTES DISJUNCTUS</i> (ODONATA: COENAGRIONIDAE,) TJ ETQQ	1 d.\$.7843	3 114 rgBT /0
80	Consequences of preformation for dynamic resource allocation by a carnivorous herb, Pinguicula vulgaris (Lentibulariaceae). American Journal of Botany, 1999, 86, 1136-1145.	0.8	30
81	Pollen-size comparisons among animal-pollinated angiosperms with different pollination characteristics. Biological Journal of the Linnean Society, 1998, 64, 513-525.	0.7	54
82	A Clarification of Pollen Discounting and Its Joint Effects with Inbreeding Depression on Mating System Evolution. American Naturalist, 1998, 152, 684-695.	1.0	139
83	THEORETICAL CONSEQUENCES OF HETEROGENEOUS TRANSPORT CONDITIONS FOR POLLEN DISPERSAL BY ANIMALS. Ecology, 1998, 79, 2789-2807.	1.5	73
84	Pollen-size comparisons among animal-pollinated angiosperms with different pollination characteristics. Biological Journal of the Linnean Society, 1998, 64, 513-525.	0.7	7
85	Economic motivation for plant species preferences of pollen-collecting bumble bees. Ecological Entomology, 1997, 22, 209-219.	1.1	44
86	Foraging currencies for non-energetic resources: pollen collection by bumblebees. Animal Behaviour, 1997, 54, 911-926.	0.8	37
87	The comparative biology of pollination and mating in flowering plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 1271-1280.	1.8	269
88	Size-Dependent Resource Allocation and Costs of Reproduction in Pinguicula Vulgaris (Lentibulariaceae). Journal of Ecology, 1996, 84, 195.	1.9	90
89	Ecology and evolution of plant mating. Trends in Ecology and Evolution, 1996, 11, 73-79.	4.2	288
90	Development of aquatic insect eggs in relation to temperature and strategies for dealing with different thermal environments. Biological Journal of the Linnean Society, 1996, 58, 221-244.	0.7	73

#	Article	IF	Citations
91	Pollen Dispersal and Mating Patterns in Animal-Pollinated Plants. , 1996, , 140-190.		223
92	Heritable allometric variation in bumble bees: opportunities for colony-level selection of foraging ability. Journal of Evolutionary Biology, 1995, 8, 725-738.	0.8	17
93	Mating cost of large floral displays in hermaphrodite plants. Nature, 1995, 373, 512-515.	13.7	497
94	S <scp>izeâ€number tradeâ€offs and pollen production by</scp> P <scp>apilionaceous legumes</scp> . American Journal of Botany, 1995, 82, 230-238.	0.8	53
95	Effect of Pollination Success on Floral Longevity in the Orchid Calypso bulbosa (Orchidaceae). American Journal of Botany, 1995, 82, 1131.	0.8	38
96	Size-number trade-offs and pollen production by Papilionaceous legumes., 1995, 82, 230.		25
97	Floral evolution and male reproductive success: Optimal dispensing schedules for pollen dispersal by animal-pollinated plants. Evolutionary Ecology, 1994, 8, 542-559.	0.5	129
98	Pollen load, capsule weight, and seed production in three orchid species. Canadian Journal of Botany, 1994, 72, 249-255.	1.2	60
99	Effects of Flower Number and Position on Self-Fertilization in Experimental Populations of Eichhornia paniculata (Pontederiaceae). Functional Ecology, 1994, 8, 526.	1.7	96
100	The Functional Significance of Poricidal Anthers and Buzz Pollination: Controlled Pollen Removal From Dodecatheon. Functional Ecology, 1994, 8, 509.	1.7	133
101	Unilateral incompatibility and the effects of interspecific pollination for <i>Erythronium americanum</i> and <i>Erythronium albidum</i> (Liliaceae). Canadian Journal of Botany, 1993, 71, 353-358.	1.2	63
102	Pollen Removal From Tristylous Pontederia Cordata: Effects of Anther Position and Pollinator Specialization. Ecology, 1993, 74, 1059-1072.	1.5	107
103	The Energy Cost of Bee Pollination for Pontederia cordata (Pontederiaceae). Functional Ecology, 1992, 6, 226.	1.7	85
104	Floral variation in Eichhornia paniculata (Spreng.) Solms (Pontederiaceae) II. Effects of development and environment on the formation of selfing flowers. Journal of Evolutionary Biology, 1992, 5, 83-107.	0.8	29
105	Short-Term Energy Maximization and Risk-Aversion in Bumble Bees: A Reply to Possingham Et Al Ecology, 1990, 71, 1625-1628.	1.5	30
106	Behavioral responses by bumble bees to variation in pollen availability. Oecologia, 1990, 85, 41-47.	0.9	146
107	Pollen Removal by Bumble Bees and Its Implications for Pollen Dispersal. Ecology, 1990, 71, 1110-1125.	1.5	180
108	An Evaluation of the Physiological and Evolutionary Influences of Inflorescence Size and Flower Depth on Nectar Production. Functional Ecology, 1990, 4, 559.	1.7	79

#	Article	IF	CITATIONS
109	Evolutionary Options for Maximizing Pollen Dispersal of Animal-Pollinated Plants. American Naturalist, 1989, 133, 323-344.	1.0	444
110	THE BUMBLE BEES OF EASTERN CANADA. Canadian Entomologist, 1988, 120, 965-987.	0.4	62
111	Choice of Individual Flowers By Bumble Bees: Interaction of Morphology, Time and Energy. Behaviour, 1988, 104, 60-76.	0.4	34
112	Why are Bumble Bees Risk Averse?. Ecology, 1987, 68, 1104-1108.	1.5	98
113	Response of traplining bumble bees to competition experiments: shifts in feeding location and efficiency. Oecologia, 1987, 71, 295-300.	0.9	87
114	Influences on the density and dispersion of bumble bee nests (Hymenoptera: Apidae). Ecography, 1986, 9, 99-103.	2.1	14
115	Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia, 1986, 69, 309-315.	0.9	159
116	Sexual reproduction and variation in floral morphology in an ephemeral vernal lily, Eyythronium americanum. Oecologia, 1985, 67, 286-291.	0.9	80
117	Morphology as a Predictor of Flower Choice by Bumble Bees. Ecology, 1985, 66, 198-210.	1.5	171
118	What do foraging hummingbirds maximize?. Oecologia, 1984, 63, 357-363.	0.9	50
119	Flower handling efficiency of bumble bees: morphological aspects of probing time. Oecologia, 1983, 57, 274-280.	0.9	151
120	Functional differences of the proboscides of short- and long-tongued bees (Hymenoptera, Apoidea). Canadian Journal of Zoology, 1983, 61, 1580-1586.	0.4	34
121	Measurement and estimation of functional proboscis length in bumblebees (Hymenoptera: Apidae). Canadian Journal of Zoology, 1982, 60, 1073-1079.	0.4	84
122	Winter use of montane forests by porcupines in southwestern Alberta: preferences, density effects, and temporal changes. Canadian Journal of Zoology, 1980, 58, 13-19.	0.4	16
123	Age composition of some vespertilionid bats as determined by dental annuli. Canadian Journal of Zoology, 1978, 56, 355-358.	0.4	8