

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3497545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydrate Polymers, 2014, 102, 324-332.	10.2	144
2	A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. International Journal of Biological Macromolecules, 2017, 104, 969-978.	7.5	122
3	Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing. International Journal of Biological Macromolecules, 2013, 58, 121-126.	7.5	103
4	Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Materials Science and Engineering C, 2012, 32, 310-320.	7.3	90
5	InÂvivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 1505-1512.	3.6	83
6	In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold. Materials Science and Engineering C, 2016, 66, 185-192.	7.3	79
7	Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012, 87, 1589-1595.	10.2	70
8	Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Biomaterials Science, 2016, 4, 678-688.	5.4	56
9	Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 1251-1260.	3.6	55
10	Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix. International Journal of Biological Macromolecules, 2013, 55, 221-230.	7.5	52
11	Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Materials Science and Engineering C, 2013, 33, 274-281.	7.3	50
12	A self-healing and injectable oxidized quaternized guar gum/carboxymethyl chitosan hydrogel with efficient hemostatic and antibacterial properties for wound dressing. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112207.	5.0	46
13	In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 683-692.	3.6	44
14	The study on the degradation and mineralization mechanism of ionâ€doped calcium polyphosphate <i>in vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 430-438.	3.4	42
15	Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydrate Polymers, 2010, 79, 705-710.	10.2	41
16	In vitro enzymatic degradation of a biological tissue fixed by alginate dialdehyde. Carbohydrate Polymers, 2013, 95, 148-154.	10.2	32
17	Feasibility study of the naturally occurring dialdehyde carboxymethyl cellulose for biological tissue fixation. Carbohydrate Polymers, 2015, 115, 54-61.	10.2	29
18	Crosslinking effect of dialdehyde starch (DAS) on decellularized porcine aortas for tissue engineering. International Journal of Biological Macromolecules, 2015, 79, 813-821.	7.5	28

Xixun Yu

#	Article	IF	CITATIONS
19	In vitro cytocompatibility evaluation of alginate dialdehyde for biological tissue fixation. Carbohydrate Polymers, 2013, 92, 448-454.	10.2	27
20	Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro. Ceramics International, 2014, 40, 6999-7005.	4.8	27
21	Effects of strontium-doped calcium polyphosphate on angiogenic growth factors expression of co-culturing system in vitro and of host cell in vivo. RSC Advances, 2014, 4, 2783-2792.	3.6	26
22	Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening. Materials Science and Engineering C, 2016, 61, 526-533.	7.3	21
23	Biocompatibility and anti-calcification of a biological artery immobilized with naturally-occurring phytic acid as the crosslinking agent. Journal of Materials Chemistry B, 2017, 5, 8115-8124.	5.8	21
24	Degradation kinetics of calcium polyphosphate bioceramic: an experimental and theoretical study. Materials Research, 2009, 12, 495-501.	1.3	20
25	Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering. Biomedical Materials (Bristol), 2012, 7, 065007.	3.3	19
26	The inhibitory effect of strontium-doped calcium polyphosphate particles on cytokines from macrophages and osteoblasts leading to aseptic loosening <i>in vitro</i> . Biomedical Materials (Bristol), 2014, 9, 025010.	3.3	19
27	Bioinspired, Artificial, Small-Diameter Vascular Grafts with Selective and Rapid Endothelialization Based on an Amniotic Membrane-Derived Hydrogel. ACS Biomaterials Science and Engineering, 2020, 6, 1603-1613.	5.2	19
28	Research on alginate-polyacrylamide enhanced amnion hydrogel, a potential vascular substitute material. Materials Science and Engineering C, 2020, 115, 111145.	7.3	17
29	Preparation, characterization, bioactivity and degradation behavior in vitro of copper-doped calcium polyphosphate as a candidate material forÂbone tissue engineering. RSC Advances, 2017, 7, 42614-42626.	3.6	15
30	Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves. Biomaterials Science, 2021, 9, 7617-7635.	5.4	15
31	Biocompatibility of genipin-fixed porcine aorta as a possible esophageal prosthesis. Materials Science and Engineering C, 2011, 31, 1593-1601.	7.3	13
32	Development and characterization of bladder acellular matrix cross-linked by dialdehyde carboxymethyl cellulose for bladder tissue engineering. RSC Advances, 2019, 9, 42000-42009.	3.6	13
33	A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: Strontium-doped calcium polyphosphate. Dental Materials Journal, 2016, 35, 241-249.	1.8	12
34	A promising material for bone repair: PMMA bone cement modified by dopamine-coated strontium-doped calcium polyphosphate particles. Royal Society Open Science, 2019, 6, 191028.	2.4	12
35	Feasibility study of oxidized hyaluronic acid cross-linking acellular bovine pericardium with potential application for abdominal wall repair. International Journal of Biological Macromolecules, 2021, 184, 831-842.	7.5	12
36	A novel CPC composite cement reinforced by dopamine coated SCPP fibers with improved physicochemical and biological properties. Materials Science and Engineering C, 2020, 109, 110544.	7.3	10

Xixun Yu

#	Article	IF	CITATIONS
37	Controlled drug release from a novel drug carrier of calcium polyphosphate/chitosan/aldehyde alginate scaffolds containing chitosan microspheres. RSC Advances, 2014, 4, 24810.	3.6	7
38	In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds. International Journal of Biological Macromolecules, 2016, 93, 1583-1590.	7.5	7
39	Reinforcement of a new calcium phosphate cement with dopamine-mediated strontium-doped calcium polyphosphate-modified polycaprolactone fibers. RSC Advances, 2016, 6, 107001-107010.	3.6	6
40	Introducing copper and collagen (<i>via</i> poly(DOPA)) coating to activate inert ceramic scaffolds for excellent angiogenic and osteogenic capacity. RSC Advances, 2018, 8, 15575-15586.	3.6	6
41	A promising potential candidate for vascular replacement materials with anti-inflammatory action, good hemocompatibility and endotheliocyte-cytocompatibility: phytic acid-fixed amniotic membrane. Biomedical Materials (Bristol), 2021, 16, 065009.	3.3	4
42	Preparation and properties of plasma sprayed strontium-doped calcium polyphosphate coating for bone tissue engineering. Ceramics International, 2014, 40, 805-809.	4.8	3
43	Effects of pH on the alginate dialdehyde (ADA)-crosslinking of natural biological tissues and in vitro study of the endothelial cell compatibility of ADA-crosslinked biological tissues. RSC Advances, 2016, 6, 24527-24535.	3.6	3
44	A collagen based vitro model of angiogenesis designed for tissue-engineering material. Applied Surface Science, 2008, 255, 312-314.	6.1	2
45	Preparation, characterization, and feasibility study of Sr/Zn-doped CPP/GNS/UHMWPE composites as an artificial joint component with enhanced hardness, impact strength, tribological and biological performance. RSC Advances, 2021, 11, 21991-21999.	3.6	2
46	The construction of a self-assembled coating with chitosan-grafted reduced graphene oxide on porous calcium polyphosphate scaffolds for bone tissue engineering. Biomedical Materials (Bristol), 2022, 17, 045016.	3.3	2
47	A comparative study between porcine peritoneum and pericardium as cardiovascular material. Tissue Engineering - Part C: Methods, 0, , .	2.1	1
48	A dural substitute based on oxidized quaternized guar gum/porcine peritoneal acellular matrix with improved stability, antibacterial and anti-adhesive properties. Chinese Chemical Letters, 2023, 34, 107591.	9.0	1
49	Research on the inhibition for aseptic loosening of artificial joints by Sr-doped calcium polyphosphate (SCPP) in vivo. Biomedical Materials (Bristol), 2021, 16, .	3.3	0