
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3497431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amphiphilic Bottlebrush Polymeric Binders for Highâ€Mass‣oading Cathodes in Lithiumâ€ŀon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	33
2	From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polymer Chemistry, 2022, 13, 2224-2261.	1.9	14
3	Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules, 2022, 55, 1590-1599.	2.2	4
4	Novel wet-free interfacial affinity modulation of non-polar polymers for imparting efficient heat transfer capability to incompatible polypropylene/graphite nanoplatelet composite. Journal of Industrial and Engineering Chemistry, 2022, 107, 346-353.	2.9	1
5	Optimizing Chain Topology of Bottle Brush Copolymer for Promoting the Disorder-to-Order Transition. International Journal of Molecular Sciences, 2022, 23, 5374.	1.8	0
6	Loop and Bridge Conformations of ABA Triblock Comb Copolymers: A Conformational Assessment for Molecular Composites. Polymers, 2022, 14, 2301.	2.0	1
7	Molecular Weight Dependent Morphological Transitions of Bottlebrush Block Copolymer Particles: Experiments and Simulations. ACS Nano, 2021, 15, 5513-5522.	7.3	24
8	Bottlebrush Copolymer as Surface Neutralizer for Vertical Alignment of Block Copolymer Nanodomains in Thin Films. ACS Macro Letters, 2021, 10, 346-353.	2.3	16
9	Ligand-Assisted Direct Photolithography of Perovskite Nanocrystals Encapsulated with Multifunctional Polymer Ligands for Stable, Full-Colored, High-Resolution Displays. Nano Letters, 2021, 21, 2288-2295.	4.5	57
10	Janus Graphene Oxide Sheets with Fe ₃ O ₄ Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 14786-14795.	4.0	38
11	Shear-Rolling Process for Unidirectionally and Perpendicularly Oriented Sub-10-nm Block Copolymer Patterns on the 4 in Scale. ACS Nano, 2021, 15, 8549-8558.	7.3	16
12	Sustained complementary resistive switching capability deployed by structure-modulated electric field confinement of core-shell nanowires in a simple polymer composite. Applied Materials Today, 2021, 23, 101038.	2.3	3
13	Self-Assembly of 2D Gold Nanoparticle Superlattice in a Polymer Vesicle Layer Driven by Hydrophobic Interaction. Journal of Physical Chemistry Letters, 2021, 12, 6736-6743.	2.1	4
14	Reactive Core-Shell Bottlebrush Copolymer as Highly Effective Additive for Epoxy Toughening. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1626-1633.	2.0	5
15	A Field Guide to Azopolymeric Optical Fourier Surfaces and Augmented Reality. Advanced Functional Materials, 2021, 31, 2104105.	7.8	19
16	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie, 2021, 133, 23082.	1.6	6
17	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie - International Edition, 2021, 60, 22900-22907.	7.2	44
18	Effect of Silica Nanoparticles Blocked with Epoxy Groups on the Crosslinking and Surface Properties of PEG Hydrogel Films. Polymers, 2021, 13, 3296.	2.0	3

#	Article	IF	CITATIONS
19	Core-Shell Copolymer as Highly Effective Additive for Epoxy Adhesives. Porrime, 2021, 45, 757-763.	0.0	0
20	Photoechogenic Inflatable Nanohybrids for Upconversion-Mediated Sonotheranostics. ACS Nano, 2021, 15, 18394-18402.	7.3	8
21	Metal complexation-mediated stable and biocompatible nanoformulation of clinically approved near-infrared absorber for improved tumor targeting and photonic theranostics. Nano Convergence, 2021, 8, 36.	6.3	7
22	Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for high-performance lithium-ion battery applications. Materials Today Advances, 2021, 12, 100186.	2.5	5
23	Position-Dependent Diffusion Dynamics of Entangled Polymer Melts Nanoconfined by Parallel Immiscible Polymer Films. ACS Macro Letters, 2020, 9, 1483-1488.	2.3	4
24	Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands. ACS Applied Materials & Interfaces, 2020, 12, 42153-42160.	4.0	38
25	Highâ€Voltageâ€Driven Surface Structuring and Electrochemical Stabilization of Niâ€Rich Layered Cathode Materials for Li Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2000521.	10.2	90
26	Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Materials, 2020, 12, .	3.8	36
27	Highâ€Fidelity, Subâ€5 nm Patterns from Highâ€ï‡ Block Copolymer Films with Vaporâ€Deposited Ultrathin, Crossâ€Linked Surfaceâ€Modification Layers. Macromolecular Rapid Communications, 2020, 41, e1900514.	2.0	7
28	Click-functionalized inverse-opal structured membranes for organocatalytic reactions. Separation and Purification Technology, 2020, 240, 116621.	3.9	6
29	Enhanced Dynamics of Confined Polymers near the Immiscible Polymer–Polymer Interface: Neutron Reflectivity Studies. ACS Macro Letters, 2020, 9, 210-215.	2.3	17
30	Adhesion Behavior of Catechol-Incorporated Silicone Elastomer on Metal Surface. ACS Applied Polymer Materials, 2020, 2, 2444-2451.	2.0	17
31	Effect of Photo-initiators on the Crosslinking Behavior of Organic Thin Films and Their Applicability to Flexible Display Encapsulation Layer. Porrime, 2020, 44, 841-847.	0.0	2
32	Self-Assembly of Temperature Sensitive Unilamellar Vesicles by a Blend of Block Copolymers in Aqueous Solution. Polymers, 2019, 11, 63.	2.0	7
33	Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and nitrogen plasma-assisted mechanochemistry. Composites Part B: Engineering, 2019, 165, 725-732.	5.9	54
34	The effect of chain architecture on the phase behavior of A ₄ B ₄ miktoarm block copolymers. Polymer Chemistry, 2019, 10, 3079-3087.	1.9	11
35	Dewetting of Thin Polymer Films on Wrinkled Graphene Oxide Monolayers. Langmuir, 2019, 35, 5549-5556.	1.6	0
36	Self-assembly of gold nanoparticles in a block copolymer aggregate template driven by hydrophobic interactions. Polymer Chemistry, 2019, 10, 6269-6277.	1.9	11

#	Article	IF	CITATIONS
37	Influence of residual impurities on ringâ€opening metathesis polymerization after copper(I)â€catalyzed alkyneâ€azide cycloaddition click reaction. Journal of Polymer Science Part A, 2019, 57, 726-737.	2.5	13
38	Thermal Approaches to Perpendicular Block Copolymer Microdomains in Thin Films: A Review and Appraisal. Macromolecular Rapid Communications, 2019, 40, e1800728.	2.0	30
39	Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid–gas interface for Li-ion battery anodes. Chemical Communications, 2018, 54, 5229-5232.	2.2	16
40	Interactions between brush-grafted nanoparticles within chemically identical homopolymers: the effect of brush polydispersity. Soft Matter, 2018, 14, 1026-1042.	1.2	13
41	Star polymer-assembled thin film composite membranes with high separation performance and low fouling. Journal of Membrane Science, 2018, 555, 369-378.	4.1	37
42	Phase behaviors of a mixture of two kinds of Pluronic triblock copolymers in aqueous solution. Physica B: Condensed Matter, 2018, 551, 184-190.	1.3	6
43	Unexpected Phase Behavior of Pluronic Polymer-Organic Derivative Mixtures Depending on Temperature in Aqueous Solution. Micromachines, 2018, 9, 505.	1.4	3
44	Balancing antimicrobial performance with hemocompatibility in amphiphilic homopolymers. Journal of Polymer Science Part A, 2018, 56, 2391-2396.	2.5	7
45	Highâ€Performance and Uniform 1 cm ² Polymer Solar Cells with D ₁ â€Aâ€D ₂ â€Aâ€Type Random Terpolymers. Advanced Energy Materials, 2018, 8, 170	01 405 .	39
46	Addressing the mid-point of polymer chains for multiple functionalization purposes through sequential thiol–epoxy †click' and esterification reactions. RSC Advances, 2017, 7, 19439-19447.	1.7	9
47	An activatable anticancer polymer–drug conjugate based on the self-immolative azobenzene motif. Journal of Materials Chemistry B, 2017, 5, 4574-4578.	2.9	24
48	Sequential coating of nanopores with charged polymers: A general approach for controlling pore properties of self-assembled block copolymer membranes. Macromolecular Research, 2017, 25, 1091-1099.	1.0	5
49	Scalable ambient synthesis of waterâ€soluble poly(βâ€hydroxythioâ€ether)s. Journal of Polymer Science Part A, 2017, 55, 3381-3386.	2.5	17
50	Domain swelling in ARB-type triblock copolymers via self-adjusting effective dispersity. Soft Matter, 2017, 13, 5527-5534.	1.2	3
51	Molecular Tailoring of Poly(styrene- <i>b</i> -methyl methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 nm Features. ACS Macro Letters, 2017, 6, 1386-1391.	2.3	37
52	Architectural Effects of Organic Nanoparticles on Block Copolymer Orientation. Macromolecules, 2017, 50, 5025-5032.	2.2	20
53	Nanoparticles as structureâ€directing agents for controlling the orientation of block copolymer microdomain in thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 118-127.	2.4	10
54	Tailoring block copolymer and polymer blend morphology using nanoparticle surfactants. Journal of Polymer Science Part A, 2016, 54, 228-237.	2.5	22

#	Article	IF	CITATIONS
55	Reduced Domain Size and Interfacial Width in Fast Ordering Nanofilled Block Copolymer Films by Direct Immersion Annealing. Macromolecules, 2016, 49, 8563-8571.	2.2	26
56	Controlling the magnetic properties of polymer–iron oxide nanoparticle composite thin films via spatial particle orientation. RSC Advances, 2016, 6, 55842-55847.	1.7	9
57	Optimized Solvent Vapor Annealing for Long-Range Perpendicular Lamellae in PS- <i>b</i> -PMMA Films. Macromolecules, 2016, 49, 1722-1730.	2.2	35
58	Three-Dimensional Multilayered Nanostructures from Crosslinkable Block Copolymers. ACS Macro Letters, 2016, 5, 287-291.	2.3	14
59	Controlling the microdomain orientation in block copolymer thin films via cross-linkable random copolymer neutral layer. Polymer Journal, 2016, 48, 333-340.	1.3	10
60	Fluorogenic nanoreactor assembly with boosted sensing kinetics for timely imaging of cellular hydrogen peroxide. Chemical Communications, 2016, 52, 1131-1134.	2.2	5
61	Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(<scp>d</scp> , <scp>l</scp> -lactic acid-ran-glycolic acid) (PLGA). Soft Matter, 2015, 11, 5666-5677.	1.2	20
62	Single Step Process for Self-Assembled Block Copolymer Patterns via in Situ Annealing during Spin-Casting. ACS Macro Letters, 2015, 4, 656-660.	2.3	12
63	Tailor-Made Polyamide Membranes for Water Desalination. ACS Nano, 2015, 9, 345-355.	7.3	109
64	Perpendicularly Oriented Block Copolymer Thin Films Induced by Neutral Star Copolymer Nanoparticles. ACS Macro Letters, 2015, 4, 133-137.	2.3	20
65	Directed molecular assembly into a biocompatible photosensitizing nanocomplex for locoregional photodynamic therapy. Journal of Controlled Release, 2015, 209, 12-19.	4.8	24
66	Nanoscale Phase Behavior of Mixed Polymer Ligands on a Gold Nanoparticle Surface. ACS Macro Letters, 2015, 4, 417-421.	2.3	21
67	The polymeric upper bound for N 2 /NF 3 separation and beyond; ZIF-8 containing mixed matrix membranes. Journal of Membrane Science, 2015, 486, 29-39.	4.1	16
68	Combined epitaxial self-assembly of block copolymer lamellae on a hexagonal pre-pattern within microgrooves. Soft Matter, 2015, 11, 4242-4250.	1.2	9
69	Layer-by-Layer Assembly of Inorganic Nanosheets and Polyelectrolytes for Reverse Osmosis Composite Membranes. Journal of Chemical Engineering of Japan, 2014, 47, 180-186.	0.3	7
70	Self-assembly of an interacting binary blend of diblock copolymers in thin films: a potential route to porous materials with reactive nanochannel chemistry. Soft Matter, 2014, 10, 5755.	1.2	19
71	3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Separation and Purification Technology, 2014, 136, 286-295.	3.9	37
72	Multiscale, Hierarchically Patterned Topography for Directing Human Neural Stem Cells into Functional Neurons. ACS Nano, 2014, 8, 7809-7822.	7.3	132

#	Article	IF	CITATIONS
73	Substrate-Independent Lamellar Orientation in High-Molecular-Weight Polystyrene- <i>b</i> -poly(methyl methacrylate) Films: Neutral Solvent Vapor and Thermal Annealing Effect. Macromolecules, 2014, 47, 3969-3977.	2.2	32
74	Molecular Layerâ€byâ€Layer Assembled Thinâ€Film Composite Membranes for Water Desalination. Advanced Materials, 2013, 25, 4778-4782.	11.1	258
75	Directed Assembly of High Molecular Weight Block Copolymers: Highly Ordered Line Patterns of Perpendicularly Oriented Lamellae with Large Periods. ACS Nano, 2013, 7, 1952-1960.	7.3	113
76	Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Applied Materials & Interfaces, 2013, 5, 12510-12519.	4.0	471
77	Efficient Surface Neutralization and Enhanced Substrate Adhesion through Ketene Mediated Crosslinking and Functionalization. Advanced Functional Materials, 2013, 23, 1597-1602.	7.8	33
78	Nanoporous Bicontinuous Structures via Addition of Thermally-Stable Amphiphilic Nanoparticles within Block Copolymer Templates. ACS Applied Materials & Interfaces, 2013, 5, 5659-5666.	4.0	19
79	Design and fabrication of thermally stable nanoparticles for wellâ€defined nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 494-507.	2.4	11
80	Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. ACS Macro Letters, 2013, 2, 677-682.	2.3	25
81	Supramolecular mimics of phase separating covalent diblock copolymers. Polymer Chemistry, 2012, 3, 2050.	1.9	30
82	Nanopatterning Biomolecules by Block Copolymer Self-Assembly. ACS Macro Letters, 2012, 1, 758-763.	2.3	33
83	Three-Dimensional Multilayered Nanostructures with Controlled Orientation of Microdomains from Cross-Linkable Block Copolymers. ACS Nano, 2011, 5, 6164-6173.	7.3	56
84	Creating Opal-Templated Continuous Conducting Polymer Films with Ultralow Percolation Thresholds Using Thermally Stable Nanoparticles. ACS Nano, 2011, 5, 9017-9027.	7.3	30
85	Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends. Macromolecules, 2011, 44, 9852-9862.	2.2	66
86	Controlling the Orientation of Block Copolymer Thin Films using Thermally-Stable Gold Nanoparticles with Tuned Surface Chemistry. Macromolecules, 2011, 44, 9356-9365.	2.2	57
87	A Strategy to Decorate the Surface of NPs and Control their Locations within Block Copolymer Templates. , 2011, , .		1
88	Tuning photoluminescence of organic rubrene nanoparticles through a hydrothermal process. Nanoscale Research Letters, 2011, 6, 405.	3.1	12
89	"Click―synthesis of thermally stable au nanoparticles with highly grafted polymer shell and control of their behavior in polymer matrix. Journal of Polymer Science Part A, 2011, 49, 3464-3474.	2.5	45
90	Evolution of Light Absorption and Emission Characteristics of Organic Perylene Nanoparticles through Hydrothermal Process: Application to Solar Cells. Advanced Functional Materials, 2011, 21, 3056-3063.	7.8	5

#	Article	IF	CITATIONS
91	Optical characterizations of GaN nanorods fabricated by natural lithography. Korean Journal of Chemical Engineering, 2010, 27, 693-696.	1.2	1
92	Highly Flexible Electronic and Optical Films Composed of Hydrophobic and Hydrophilic Multilayers. Macromolecular Chemistry and Physics, 2010, 211, 1188-1195.	1.1	2
93	Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications. Thin Solid Films, 2010, 518, 6583-6586.	0.8	11
94	Enhancement of the Light-Extraction Efficiency of GaN-Based Light Emitting Diodes Using Graded-Refractive-Index Layer by SiO[sub 2] Nanosphere Lithography. Journal of the Electrochemical Society, 2010, 157, H449.	1.3	14
95	Sulfonated poly(arylene ether sulfone) RO membranes for high water flux and chlorine resistance. Desalination and Water Treatment, 2010, 15, 205-213.	1.0	3
96	Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers. Journal of Materials Chemistry, 2010, 20, 2085.	6.7	64
97	Fabrication of Water-Soluble Nanocrystals using Amphiphilic Block Copolymer Patterned Surfaces. Crystal Growth and Design, 2010, 10, 5187-5192.	1.4	8
98	Carbon nanotube-based nanocomposite desalination membranes from layer-by-layer assembly. Desalination and Water Treatment, 2010, 15, 76-83.	1.0	21
99	Enhancement of Chlorine Resistance in Carbon Nanotube Based Nanocomposite Reverse Osmosis Membranes. Desalination and Water Treatment, 2010, 15, 198-204.	1.0	67
100	Facile Synthesis of Thermally Stable Coreâ	2.2	71
101	Sulfonated poly(arylene ether sulfone) thin-film composite reverse osmosis membrane containing SiO ₂ nano-particles. Desalination and Water Treatment, 2010, 15, 69-75.	1.0	7
102	Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns. Advanced Materials, 2009, 21, 4769-4792.	11.1	637
103	Enhanced light emission of nano-patterned GaN via block copolymer thin films. Korean Journal of Chemical Engineering, 2009, 26, 277-280.	1.2	3
104	Electrical characterizations of Neutron-irradiated SiC Schottky diodes. Korean Journal of Chemical Engineering, 2009, 26, 285-287.	1.2	8
105	Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays. Thin Solid Films, 2009, 517, 2742-2744.	0.8	26
106	Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography. Thin Solid Films, 2009, 517, 3859-3861.	0.8	34
107	Tailoring Coreâ^'Shell Polymer-Coated Nanoparticles as Block Copolymer Surfactants. Macromolecules, 2009, 42, 6193-6201.	2.2	58
108	Free-Standing Nanocomposite Multilayers with Various Length Scales, Adjustable Internal Structures, and Functionalities. Journal of the American Chemical Society, 2009, 131, 2579-2587.	6.6	77

#	Article	IF	CITATIONS
109	Modulation of Proteinâ^'Surface Interactions on Nanopatterned Polymer Films. Biomacromolecules, 2009, 10, 1061-1066.	2.6	33
110	GaN-Based Light-Emitting Diode With Three-Dimensional Silver Reflectors. IEEE Photonics Technology Letters, 2009, 21, 700-702.	1.3	16
111	Free-standing film electronics using photo-crosslinking layer-by-layer assembly. Journal of Materials Chemistry, 2009, 19, 4488.	6.7	22
112	Co/Pt Nanodot Arrays Fabricated via Pulsed Laser Deposition Usingthe Phase-Separated Diblock Copolymer Film as a Template. Journal of Nanoscience and Nanotechnology, 2009, 9, 2976-2980.	0.9	2
113	Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications. Thin Solid Films, 2008, 516, 7744-7747.	0.8	20
114	On the selection of FCC and BCC lattices in poly(styrene-b-isoprene) copolymer micelles. Macromolecular Research, 2008, 16, 51-56.	1.0	14
115	A high purity approach to poly(3â€hexylthiophene) diblock copolymers. Journal of Polymer Science Part A, 2008, 46, 8200-8205.	2.5	32
116	Highly ordered nanoporous thin films by blending of PStâ€ <i>b</i> â€₱MMA block copolymers and PEO additives as structure directing agents. Journal of Polymer Science Part A, 2008, 46, 8041-8048.	2.5	13
117	Meltâ€state miscibility of poly(ethyleneâ€ <i>co</i> â€lâ€octene) and linear polyethylene. Journal of Applied Polymer Science, 2008, 107, 2584-2587.	1.3	8
118	Selfâ€assembly of Protein Nanoarrays on Block Copolymer Templates. Advanced Functional Materials, 2008, 18, 3148-3157.	7.8	58
119	Integrated Catalytic Activity of Patterned Multilayer Films Based on pHâ€Induced Electrostatic Properties of Enzymes. Advanced Materials, 2008, 20, 1843-1848.	11.1	22
120	Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films. Macromolecules, 2008, 41, 4328-4339.	2.2	79
121	Size control and registration of nano-structured thin films by cross-linkable units. Soft Matter, 2008, 4, 475.	1.2	34
122	Distribution of Nanoparticles in Lamellar Domains of Block Copolymers. Macromolecules, 2007, 40, 3361-3365.	2.2	145
123	Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles. Macromolecules, 2007, 40, 8119-8124.	2.2	73
124	Creating Surfactant Nanoparticles for Block Copolymer Composites through Surface Chemistry. Langmuir, 2007, 23, 12693-12703.	1.6	182
125	Effect of Humidity on the Ordering of PEO-Based Copolymer Thin Films. Macromolecules, 2007, 40, 7019-7025.	2.2	106
126	Importance of End-Group Structure in Controlling the Interfacial Activity of Polymer-Coated Nanoparticles. Macromolecules, 2007, 40, 1796-1798.	2.2	58

#	Article	IF	CITATIONS
127	Facile Routes to Patterned Surface Neutralization Layers for Block Copolymer Lithography. Advanced Materials, 2007, 19, 4552-4557.	11.1	149
128	Simple fabrication of nanoporous films on ZnO for enhanced light emission. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3417-3422.	0.8	0
129	Defect-Free Nanoporous Thin Films from ABC Triblock Copolymers. Journal of the American Chemical Society, 2006, 128, 7622-7629.	6.6	292
130	Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template. Macromolecules, 2006, 39, 4108-4114.	2.2	293
131	Sphere, Cylinder, and Vesicle Nanoaggregates in Poly(styrene-b-isoprene) Diblock Copolymer Solutions. Macromolecules, 2006, 39, 1199-1208.	2.2	211
132	Kinetics of disorder-to-fcc phase transition via an intermediate bcc state. Physical Review E, 2006, 73, 061803.	0.8	18
133	Orderâ^'Disorder Transition and Critical Micelle Temperature in Concentrated Block Copolymer Solutions. Macromolecules, 2005, 38, 2449-2459.	2.2	40
134	Introductory Lecture : Strategies for controlling intra- and intermicellar packing in block copolymer solutions: Illustrating the flexibility of the self-assembly toolbox. Faraday Discussions, 2005, 128, 1.	1.6	101
135	Interplay between Cubic and Hexagonal Phases in Block Copolymer Solutions. Langmuir, 2005, 21, 1403-1411.	1.6	19
136	Cryogenic Transmission Electron Microscopy Imaging of Vesicles Formed by a Polystyreneâ^'Polyisoprene Diblock Copolymer. Macromolecules, 2005, 38, 6779-6781.	2.2	42
137	Origin of the Thermoreversible fcc-bcc Transition in Block Copolymer Solutions. Physical Review Letters, 2004, 92, 145501.	2.9	86
138	Long-Lived Metastable bcc Phase during Ordering of Micelles. Physical Review Letters, 2004, 93, 245701.	2.9	31
139	Epitaxial Transitions among FCC, HCP, BCC, and Cylinder Phases in a Block Copolymer Solution. Macromolecules, 2004, 37, 9064-9075.	2.2	65
140	Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature. Journal of Chemical Physics, 2004, 121, 11489.	1.2	63
141	Mechanisms and Epitaxial Relationships between Close-Packed and BCC Lattices in Block Copolymer Solutions. Journal of Physical Chemistry B, 2003, 107, 12071-12081.	1.2	45
142	Origins of Anomalous Micellization in Diblock Copolymer Solutions. Langmuir, 2003, 19, 2103-2109.	1.6	40
143	Time-Resolved Small-Angle X-ray Scattering Study of the Kinetics of Disorderâ^'Order Transition in a Triblock Copolymer in a Selective Solvent for the Middle Block. Macromolecules, 2003, 36, 8097-8106.	2.2	30
144	Thermoreversible, Epitaxialfcc↔bccTransitions in Block Copolymer Solutions. Physical Review Letters, 2002, 89, 215505.	2.9	63

#	Article	IF	CITATIONS
145	Solvent mediated thermodynamically favorable helical supramolecular self-assembly: recognition behavior towards achiral and chiral analytes. Journal of Materials Chemistry C, 0, , .	2.7	2