Qunfeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3497209/publications.pdf

Version: 2024-02-01

1040056 1199594 12 419 9 12 citations h-index g-index papers 13 13 13 407 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biology, 2017, 17, 64.	3.6	93
2	Metabolomic Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF MS) Uncovers the Effects of Light Intensity and Temperature under Shading Treatments on the Metabolites in Tea. PLoS ONE, 2014, 9, e112572.	2.5	91
3	Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biology, 2017, 17, 165.	3.6	64
4	Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar. Frontiers in Plant Science, 2017, 8, 291.	3.6	38
5	Preferential assimilation of NH4+ over NO3â^ in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis. Plant Science, 2020, 291, 110369.	3.6	33
6	Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3â° as signaling molecules in tea plant (Camellia sinensis L.). Scientia Horticulturae, 2017, 218, 293-303.	3.6	32
7	Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.). BMC Plant Biology, 2019, 19, 425.	3.6	25
8	Dynamics of nitrogen translocation from mature leaves to new shoots and related gene expression during spring shoots development in tea plants (<i>Camellia sinensis</i> L.). Journal of Plant Nutrition and Soil Science, 2020, 183, 180-191.	1.9	15
9	Accumulation of Amino Acids and Flavonoids in Young Tea Shoots Is Highly Correlated With Carbon and Nitrogen Metabolism in Roots and Mature Leaves. Frontiers in Plant Science, 2021, 12, 756433.	3.6	11
10	Glutamate dehydrogenase isogenes CsGDHs cooperate with glutamine synthetase isogenes CsGSs to assimilate ammonium in tea plant (Camellia sinensis L.). Plant Science, 2021, 312, 111031.	3.6	10
11	Isolation and characterization of chloroplastic glutamine synthetase gene (CsGS2) in tea plant Camellia sinensis. Plant Physiology and Biochemistry, 2020, 155, 321-329.	5.8	4
12	iTRAQ-based proteomic analysis provides insights into the biological mechanism of ammonium metabolism in tea plant (Camellia sinensis L.). Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	3