Zhao-Jun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3497154/publications.pdf Version: 2024-02-01

<u> 7нао-Іны Гін</u>

#	Article	IF	CITATIONS
1	Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. Journal of Clinical Investigation, 2007, 117, 1249-1259.	8.2	595
2	Regulation of <i>Notch1</i> and <i>Dll4</i> by Vascular Endothelial Growth Factor in Arterial Endothelial Cells: Implications for Modulating Arteriogenesis and Angiogenesis. Molecular and Cellular Biology, 2003, 23, 14-25.	2.3	456
3	Activation of Notch1 signaling is required for Â-catenin-mediated human primary melanoma progression. Journal of Clinical Investigation, 2005, 115, 3166-3176.	8.2	293
4	Notch1 Signaling Promotes Primary Melanoma Progression by Activating Mitogen-Activated Protein Kinase/Phosphatidylinositol 3-Kinase-Akt Pathways and Up-regulating N-Cadherin Expression. Cancer Research, 2006, 66, 4182-4190.	0.9	251
5	Hyperoxia, Endothelial Progenitor Cell Mobilization, and Diabetic Wound Healing. Antioxidants and Redox Signaling, 2008, 10, 1869-1882.	5.4	231
6	Oxygen: Implications for Wound Healing. Advances in Wound Care, 2012, 1, 225-230.	5.1	149
7	Notch signaling: Emerging molecular targets for cancer therapy. Biochemical Pharmacology, 2010, 80, 690-701.	4.4	148
8	Fibroblastâ€dependent differentiation of human microvascular endothelial cells into capillaryâ€like, threeâ€dimensional networks. FASEB Journal, 2002, 16, 1316-1318.	0.5	130
9	Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes To Cells, 1999, 4, 41-56.	1.2	117
10	Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes. Cancer Research, 2009, 69, 5312-5320.	0.9	103
11	Notch activation induces endothelial cell senescence and pro-inflammatory response: Implication of Notch signaling in atherosclerosis. Atherosclerosis, 2012, 225, 296-303.	0.8	90
12	Epigenetic reprogramming of melanoma cells by vitamin C treatment. Clinical Epigenetics, 2015, 7, 51.	4.1	74
13	Identification of E-selectin as a Novel Target for the Regulation of Postnatal Neovascularization. Annals of Surgery, 2010, 252, 625-634.	4.2	43
14	Targeting Notch Signaling for Cancer Therapeutic Intervention. Advances in Pharmacology, 2012, 65, 191-234.	2.0	41
15	Vitamin C Sensitizes Melanoma to BET Inhibitors. Cancer Research, 2018, 78, 572-583.	0.9	41
16	Intracellular Notch1 Signaling in Cancer-Associated Fibroblasts Dictates the Plasticity and Stemness of Melanoma Stem/Initiating Cells. Stem Cells, 2019, 37, 865-875.	3.2	37
17	VEGFâ€A and α V β 3 integrin synergistically rescue angiogenesis via Nâ€Ras and Pl3â€K signaling in human microvascular endothelial cells. FASEB Journal, 2003, 17, 1-21.	0.5	36
18	A Molecular and Clinical Review of Stem Cell Therapy in Critical Limb Ischemia. Stem Cells International, 2017, 2017, 1-10.	2.5	32

Zhao-Jun Liu

#	Article	IF	CITATIONS
19	Directing and Potentiating Stem Cell-Mediated Angiogenesis and Tissue Repair by Cell Surface E-Selectin Coating. PLoS ONE, 2016, 11, e0154053.	2.5	31
20	Ascorbate induces apoptosis in melanoma cells by suppressing Clusterin expression. Scientific Reports, 2017, 7, 3671.	3.3	29
21	SDF-1α-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Scientific Reports, 2016, 6, 34416.	3.3	24
22	Inhibition of Tumor Angiogenesis and Melanoma Growth by Targeting Vascular E-Selectin. Annals of Surgery, 2011, 254, 450-457.	4.2	23
23	Hepatoma-Derived Growth Factor-Related Protein-3 Is a Novel Angiogenic Factor. PLoS ONE, 2015, 10, e0127904.	2.5	22
24	Inhibition of Fibroblast Growth by Notch1 Signaling Is Mediated by Induction of Wnt11-Dependent WISP-1. PLoS ONE, 2012, 7, e38811.	2.5	19
25	The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. Journal of Vascular Surgery, 2018, 68, 127S-135S.	1.1	19
26	Notch1—WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis. Oncotarget, 2016, 7, 79262-79273.	1.8	19
27	Notch1 signaling determines the plasticity and function of fibroblasts in diabetic wounds. Life Science Alliance, 2020, 3, e202000769.	2.8	17
28	A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery. Journal of Visualized Experiments, 2020, , .	0.3	16
29	A Reliable Mouse Model of Hind limb Gangrene. Annals of Vascular Surgery, 2018, 48, 222-232.	0.9	15
30	Down-regulation of \hat{I} ±6 integrin, an anti-oncogene product, by functional cooperation of H-Ras and c-Myc. Genes To Cells, 2001, 6, 337-343.	1.2	12
31	Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion. PLoS ONE, 2015, 10, e0142815.	2.5	12
32	Intramuscular E-selectin/adeno-associated virus gene therapy promotes wound healing in an ischemic mouse model. Journal of Surgical Research, 2018, 228, 68-76.	1.6	10
33	Converting melanoma-associated fibroblasts into a tumor-suppressive phenotype by increasing intracellular Notch1 pathway activity. PLoS ONE, 2021, 16, e0248260.	2.5	9
34	c-Kit suppresses atherosclerosis in hyperlipidemic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H867-H876.	3.2	7
35	Impeding the single-strand annealing pathway of DNA double-strand break repair by withaferin A-mediated FANCA degradation. DNA Repair, 2019, 77, 10-17.	2.8	7
36	E-Selectin-Overexpressing Mesenchymal Stem Cell Therapy Confers Improved Reperfusion, Repair, and Regeneration in a Murine Critical Limb Ischemia Model. Frontiers in Cardiovascular Medicine, 2021, 8, 826687.	2.4	7

Zhao-Jun Liu

#	Article	IF	CITATIONS
37	E-Selectin/AAV2/2 Gene Therapy Alters Angiogenesis and Inflammatory Gene Profiles in Mouse Gangrene Model. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	5
38	Gangrene, revascularization, and limb function improved with E-selectin/adeno-associated virus gene therapy. JVS Vascular Science, 2021, 2, 20-32.	1.1	4
39	Increasing The Therapeutic Potential Of Stem Cell Therapies For Critical Limb Ischemia. HSOA Journal of Stem Cells Research, Development & Therapy, 2020, 6, 1-7.	0.2	3
40	Novel combinations to improve hematopoiesis in myelodysplastic syndrome. Stem Cell Research and Therapy, 2020, 11, 132.	5.5	2
41	High-Resolution Three-Dimensional Imaging of the Footpad Vasculature in a Murine Hindlimb Gangrene Model. Journal of Visualized Experiments, 2022, , .	0.3	2
42	Diabetic foot ulcers: effects of hyperoxia and SDF-1α on endothelial progenitor cells. Expert Review of Endocrinology and Metabolism, 2010, 5, 113-125.	2.4	1
43	Therapeutic angiogenesis in Buerger's disease: reviewing the treatment landscape. Therapeutic Advances in Rare Disease, 2022, 3, 263300402110702.	0.7	1