Denise C Endringer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3497023/denise-c-endringer-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39	317	11	15
papers	citations	h-index	g-index
43 ext. papers	404	3.3	3.03
	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
39	Asphaltenes subfractions characterization and calculation of their solubility parameter using ESI(-) FT-ICR MS: Part II. <i>Fuel</i> , 2022 , 312, 122864	7.1	3
38	Chemical Characterization and Interfacial Activity of Molecules Isolated from Brazilian Oils by Adsorption onto Wet Silica Particles. <i>Energy & Energy & Ene</i>	4.1	3
37	Visualisation of penetration of topical antifungal drug substances through mycosis-infected nails by matrix-assisted laser desorption ionisation mass spectrometry imaging. <i>Mycoses</i> , 2020 , 63, 869-875	5.2	3
36	Intrapulmonary (i.pulmon.) Pull Immunization With the Tuberculosis Subunit Vaccine Candidate H56/CAF01 After Intramuscular (i.m.) Priming Elicits a Distinct Innate Myeloid Response and Activation of Angel 11, 2023	8.4	8
35	Immunology, 2020 , 11, 803 Study of the Influence of Resins on the Asphaltene Aggregates by 1H DOSY NMR. <i>Energy & amp;</i> Fuels, 2020 , 34, 5679-5688	4.1	8
34	Phenolic and glycidic profiling of bananas Musa sp associated with maturation stage and cancer chemoprevention activities. <i>Microchemical Journal</i> , 2020 , 153, 104391	4.8	4
33	Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICR MS and portable NIR associated with sensory analysis. <i>Journal of Food Composition and Analysis</i> , 2020 , 94, 103637	4.1	2
32	Corrosion rate studies of AISI 1020 steel using linear, cyclic, and aromatic naphthenic acid standards. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106474	4.4	5
31	Characterization of organosulfur compounds in asphalt cement samples by ESI(+)FT-ICR MS and 13C NMR spectroscopy. <i>Fuel</i> , 2019 , 256, 115923	7.1	19
30	Controlling the quality of grape juice adulterated by apple juice using ESI(-)FT-ICR mass spectrometry. <i>Microchemical Journal</i> , 2019 , 149, 104033	4.8	2
29	Designer drugs analysis by LDI(+), MALDI(+) and MALDI(+) imaging coupled to FT-ICR MS. <i>Microchemical Journal</i> , 2019 , 149, 104002	4.8	2
28	Study of chemical profile and of lines crossing using blue and black ink pens by LDI (+) MS and LDI (+) imaging. <i>Microchemical Journal</i> , 2019 , 148, 220-229	4.8	4
27	LDI and MALDI-FT-ICR imaging MS in Cannabis leaves: optimization and study of spatial distribution of cannabinoids. <i>Analytical Methods</i> , 2019 , 11, 1757-1764	3.2	6
26	Hexane partition from Annona crassiflora Mart. promotes cytotoxity and apoptosis on human cervical cancer cell lines. <i>Investigational New Drugs</i> , 2019 , 37, 602-615	4.3	9
25	Epidemiological profile and drug abuse: fatal occupational injuries in Espirito Santo, Brazil. <i>Comparative Clinical Pathology</i> , 2019 , 28, 487-492	0.9	O
24	Evaluating the effect of ion source gas (N2, He, and synthetic air) on the ionization of hydrocarbon, condensed aromatic standards, and paraffin fractions by APCI(+)FT-ICR MS. <i>Fuel</i> , 2018 , 225, 632-645	7.1	6
23	Characterization of Naphthenic Acids in Thermally Degraded Petroleum by ESI(IFT-ICR MS and 1H NMR after Solid-Phase Extraction and Liquid/Liquid Extraction. <i>Energy & Energy </i>	3 ^{4.1}	24

(2015-2018)

22	Chemical profile of pineapple cv. Vitā in different maturation stages using electrospray ionization mass spectrometry. <i>Journal of the Science of Food and Agriculture</i> , 2018 , 98, 1105-1116	4.3	13	
21	Asphaltenes subfractions extracted from Brazilian vacuum residue: Chemical characterization and stabilization of model water-in-oil (W/O) emulsions. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 160, 1-11	4.4	12	
20	APCI(+)FT-ICR MS Analysis of Hydrocarbons Using Isooctane as Ionizing Reagent - A Comparison with HTGC-FID, GC&C-MS and NMR. <i>Journal of the Brazilian Chemical Society</i> , 2018 ,	1.5	2	
19	Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion. <i>BioMed Research International</i> , 2018 , 2018, 4702481	3	6	
18	Differentiation of populations with different fluorescence intensities with a machine-learning based classifier. <i>Comparative Clinical Pathology</i> , 2017 , 26, 385-389	0.9	2	
17	Evaluation of Adsorbent Materials for the Removal of Nitrogen Compounds in Vacuum Gas Oil by Positive and Negative Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Double Burney</i> , 2017, 31, 3454-3464	4.1	13	
16	Fractionation of asphaltenes in n-hexane and on adsorption onto CaCO3 and characterization by ESI(+)FT-ICR MS: Part I. <i>Fuel</i> , 2017 , 210, 790-802	7.1	24	
15	Blue-black grassquit (Volatina jacarina) leucocyte and average weight reference values. <i>Comparative Clinical Pathology</i> , 2017 , 26, 1209-1212	0.9		
14	Cell Viability by CellProfiler Software as Equivalent to MTT Assay. <i>Pharmacognosy Magazine</i> , 2017 , 13, S365-S369	0.8	6	
13	Evaluation of acute toxicity of europiumBrganic complex applied as a luminescent marker for the visual identification of gunshot residue. <i>Microchemical Journal</i> , 2016 , 124, 195-200	4.8	13	
12	Free-living ruddy ground dove (Columbina talpacoti): a report on leukocyte and weight values. <i>Comparative Clinical Pathology</i> , 2016 , 25, 959-963	0.9		
11	Novel data for free-living saffron finch (Sicalis flaveola): reference hematological value and body mass. <i>Comparative Clinical Pathology</i> , 2016 , 25, 465-468	0.9	1	
10	Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS). <i>Food Chemistry</i> , 2016 , 204, 37-45	8.5	49	
9	Essential Oil from the Resin of Protium heptaphyllum: Chemical Composition, Cytotoxicity, Antimicrobial Activity, and Antimutagenicity. <i>Pharmacognosy Magazine</i> , 2016 , 12, S42-6	0.8	11	
8	Brown seaweed Padina gymnospora is a prominent natural wound-care product. <i>Revista Brasileira De Farmacognosia</i> , 2016 , 26, 714-719	2	15	
7	Haematological and serum biochemical reference values for captive blue-fronted amazon parrot. <i>Comparative Clinical Pathology</i> , 2016 , 25, 519-524	0.9	1	
6	Replacement of specific markers for apoptosis and necrosis by nuclear morphology for affordable cytometry. <i>Journal of Immunological Methods</i> , 2015 , 420, 24-30	2.5	11	
5	A hematologic and biochemical profile on 3-month-old hatchlings of Lepidochelys olivacea. <i>Comparative Clinical Pathology</i> , 2015 , 24, 1333-1337	0.9	3	

4	A reproducible differential blood cell count without a cytometer or specific markers. <i>Journal of Morphological Sciences</i> , 2015 , 32, 078-081	0.1	
3	Morphometry to identify subtypes of leukocytes. <i>Hematology/ Oncology and Stem Cell Therapy</i> , 2014 , 7, 69-75	2.7	10
2	Efficacy of guaco mouthwashes (Mikania glomerata and Mikania laevigata) on the disinfection of toothbrushes. <i>Revista Brasileira De Farmacognosia</i> , 2012 , 22, 1330-1337	2	3
1	Cellular analysis by open-source software for affordable cytometry. <i>Scanning</i> , 2011 , 33, 33-40	1.6	11