
Branka DuÅjan Živanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3497003/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signal transduction in Phycomyces sporangiophores: columella as a novel sensory organelle mediating auxin-modulated growth rate and membrane potential. Protoplasma, 2022, 259, 917-935.	2.1	3
2	The effect of auxin (indole-3-acetic acid) on the growth rate and tropism of the sporangiophore of Phycomyces blakesleeanus and identification of auxin-related genes. Protoplasma, 2018, 255, 1331-1347.	2.1	12
3	Revealing mechanisms of salinity tissue tolerance in succulent halophytes: <scp>A</scp> case study for <scp><i>Carpobrotus rossi</i></scp> . Plant, Cell and Environment, 2018, 41, 2654-2667.	5.7	33
4	Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Functional Plant Biology, 2016, 43, 75.	2.1	76
5	Dissecting blue light signal transduction pathway in leaf epidermis using a pharmacological approach. Planta, 2015, 242, 813-827.	3.2	3
6	Filter strip as a method of choice for apoplastic fluid extraction from maize roots. Plant Science, 2014, 223, 49-58.	3.6	16
7	Linking oxidative and salinity stress tolerance in barley: can root antioxidant enzyme activity be used as a measure of stress tolerance?. Plant and Soil, 2013, 365, 141-155.	3.7	53
8	Intracellular reorganization and ionic signaling of the <i><i>Phycomyces</i></i> stage I sporangiophore in response to gravity and touch. Communicative and Integrative Biology, 2013, 6, e22291.	1.4	4
9	Surface tip-to-base Ca2+ and H+ ionic fluxes are involved in apical growth and graviperception of the Phycomyces stage I sporangiophore. Planta, 2012, 236, 1817-1829.	3.2	9
10	Quantification of the Antioxidant Activity in Salt-Stressed Tissues. Methods in Molecular Biology, 2012, 913, 237-250.	0.9	23
11	The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. Journal of Food Composition and Analysis, 2012, 28, 46-53.	3.9	65
12	Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?. Archives of Biological Sciences, 2012, 64, 539-547.	0.5	8
13	Alternative respiration of fungus Phycomyces blakesleeanus. Antonie Van Leeuwenhoek, 2009, 95, 207-217.	1.7	7
14	Peroxidase activity and phenolic compounds content in maize root and leaf apoplast, and their association with growth. Plant Science, 2008, 175, 656-662.	3.6	32
15	Spectral and Dose Dependence of Light-Induced Ion Flux Responses from Maize Leaves and their Involvement in Leaf Expansion Growth. Plant and Cell Physiology, 2007, 48, 598-605.	3.1	11
16	Ca2+and H+Ion Fluxes near the Surface of Gravitropically StimulatedPhycomycesSporangiophore. Annals of the New York Academy of Sciences, 2005, 1048, 487-490.	3.8	10
17	A New Model System for Investigation of Ionic Channels in Filamentous Fungi: Evidence for Existence of Two K+-Permeable Ionic Channels inPhycomyces blakesleeanus. Annals of the New York Academy of Sciences, 2005, 1048, 491-495.	3.8	5
18	Changes inChenopodium rubrumSeeds with Aging. Annals of the New York Academy of Sciences, 2005, 1048, 505-508.	3.8	4

#	Article	IF	CITATIONS
19	Light-induced transient ion flux responses from maize leaves and their association with leaf growth and photosynthesis. Plant, Cell and Environment, 2005, 28, 340-352.	5.7	30
20	Effect of Darkness on Growth and Flowering of Chenopodium rubrum and C. murale Plants in vitro. Biologia Plantarum, 2003, 46, 471-474.	1.9	4
21	The influence of mechanical activation on the process of reaction sintering of Portland cement clinker. Science of Sintering, 2002, 34, 95-100.	1.4	4
22	MEMBRANE POTENTIAL AND ENDOGENOUS ION CURRENT OFPHYCOMYCESSPORANGIOPHORES. Electromagnetic Biology and Medicine, 2001, 20, 343-362.	0.4	12
23	The Effect of Metabolic Inhibitors, Sugars and Fusicoccin on the Electrical Potential Difference Arising Across an Intact Chenopodium Rubrum L. Plant. Biologia Plantarum, 2001, 44, 361-366.	1.9	2
24	The Effects of Photoperiod, Glucose and Gibberellic Acid on Growth In Vitro and Flowering of Chenopodium Murale. Biologia Plantarum, 2000, 43, 173-177.	1.9	7
25	The Effects of Growth Regulators on Flowering of Chenopodium murale Plants in vitro. Biologia Plantarum, 2000, 43, 451-454.	1.9	2
26	Photoperiodic induction of flowering in Chenopodium rubrum L. might be controlled by an oscillatory mechanism. Journal of Plant Physiology, 1996, 149, 707-713.	3.5	3
27	The effects of hormones and saccharides on growth and flowering of green and herbicides-treatedChenopodium rubrum L. plants. Biologia Plantarum, 1995, 37, 257.	1.9	9
28	Photoperiodic induction of flowering in green and photobleachedChenopodium rubrum L. ecotype 184 - a short- day plant. Biologia Plantarum, 1992, 34, 457.	1.9	5