Qing Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3496933/publications.pdf

Version: 2024-02-01

1162367 1058022 20 205 8 14 citations g-index h-index papers 20 20 20 306 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Fabrication of PLGA <i>in situ</i> forming implants and study on their correlation of <i>inÂvitro</i> release profiles with <i>inÂvivo</i> performances. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 994-1008.	1.9	2
2	Influence of drying processes on the structures, morphology and <i>in vitro</i> release profiles of risperidone-loaded PLGA microspheres. Journal of Microencapsulation, 2019, 36, 21-31.	1.2	9
3	Insulin-loaded hydroxypropyl methyl cellulose-co-polyacrylamide-co-methacrylic acid hydrogels used as rectal suppositories to regulate the blood glucose of diabetic rats. International Journal of Biological Macromolecules, 2019, 121, 1346-1353.	3.6	17
4	In vitro evaluation of sustained release of risperidoneâ€loaded microspheres fabricated from different viscosity of <scp>PLGA</scp> polymers. Polymers for Advanced Technologies, 2018, 29, 384-393.	1.6	7
5	Polyelectrolyte Complex Nanoparticles Based on Methoxy Poly(Ethylene Glycol)-B-Poly (Îμ-Caprolactone) Carboxylates and Chitosan for Delivery of Tolbutamide. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1799-1811.	1.9	4
6	Development and evaluation of a novel polymeric hydrogel of sucrose acrylate-co-polymethylacrylic acid for oral curcumin delivery. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 194-206.	1.9	18
7	The binary complex of poly(PEGMA-co-MAA) hydrogel and PLGA nanoparticles as a novel oral drug delivery system for ibuprofen delivery. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1874-1887.	1.9	14
8	Fabrication and evaluation of a novel polymeric hydrogel of carboxymethyl chitosan-g-polyacrylic acid (CMC-g-PAA) for oral insulin delivery. RSC Advances, 2016, 6, 52858-52867.	1.7	29
9	Release profile of insulin from pH-sensitive hydrogel and its hypoglycemic effect by oral administration. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 86-96.	1.9	7
10	Manufacture, Characterization, and Release Profiles of Insulin-Loaded Mesoporous PLGA Microspheres. Materials and Manufacturing Processes, 2016, 31, 1061-1065.	2.7	7
11	Synthesis, characterization and release profiles of nanoparticles self-assembled from poly (PEGMA-co-MMA-co-acryloyl- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -CD) copolymers. Surface and Interface Analysis, 2015, 47, 270-277.	0.8	4
12	Synthesis and performance of pH-sensitive hydrogel microspheres and in vitro evaluation as potential drug carriers. Microsystem Technologies, 2015, 21, 2287-2296.	1.2	8
13	Fabrication, characterization, and controlled release of eprinomectin from injectable mesoporous PLGA microspheres. RSC Advances, 2015, 5, 75025-75032.	1.7	7
14	Pesticideâ€conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polymers for Advanced Technologies, 2013, 24, 137-143.	1.6	41
15	Preliminary studies on pH-sensitive hydrogels and <i>in vitro</i> release profiles of two model drugs. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1459-1471.	1.9	14
16	Preparation of pH-sensitive Hydrogels for Oral Delivery of Protein. , 2012, , .		1
17	Preparation of abamectin-loaded porous acrylic resin and controlled release studies. Iranian Polymer Journal (English Edition), 2012, 21, 731-738.	1.3	5
18	Preparation of acrylic/acrylate copolymeric surfactants by emulsion polymerization used in pesticide oilâ€inâ€water emulsions. Journal of Applied Polymer Science, 2012, 123, 3117-3127.	1.3	8

#	Article	IF	CITATIONS
19	The Release Characteristics of Different Model Drugs from Medicated PLGA Microspheres. Advanced Materials Research, 0, 936, 746-750.	0.3	1
20	Synthesis and Performance of pH-Sensitive Hydrogel Microspheres and <i>In Vitro</i> Evaluation as Potential Drug Carriers. Advanced Materials Research, 0, 936, 751-756.	0.3	2