Ana Cervera-Ferri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3496887/publications.pdf

Version: 2024-02-01

623188 676716 22 704 14 22 citations g-index h-index papers 23 23 23 972 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Oscillatory Profile Induced by the Anxiogenic Drug FG-7142 in the Amygdala–Hippocampal Network Is Reversed by Infralimbic Deep Brain Stimulation: Relevance for Mood Disorders. Biomedicines, 2021, 9, 783.	1.4	11
2	When Does Alzheimer's Disease Really Start? The Role of Biomarkers. Focus (American Psychiatric) Tj ETQq0	0 8.rgBT	/Overlock 10 T
3	Is Oxidative Stress the Link Between Cerebral Small Vessel Disease, Sleep Disruption, and Oligodendrocyte Dysfunction in the Onset of Alzheimer's Disease?. Frontiers in Physiology, 2021, 12, 708061.	1.3	13
4	Effects of Acute Stress on the Oscillatory Activity of the Hippocampus–Amygdala–Prefrontal Cortex Network. Neuroscience, 2021, 476, 72-89.	1.1	8
5	Integrating pheromonal and spatial information in the amygdalo-hippocampal network. Nature Communications, 2021, 12, 5286.	5.8	11
6	Electroencephalography as a Non-Invasive Biomarker of Alzheimer's Disease: A Forgotten Candidate to Substitute CSF Molecules?. International Journal of Molecular Sciences, 2021, 22, 10889.	1.8	11
7	Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: Implications in the search for biomarkers. Journal of Comparative Neurology, 2020, 528, 1367-1391.	0.9	7
8	Is Sleep Disruption a Cause or Consequence of Alzheimer's Disease? Reviewing Its Possible Role as a Biomarker. International Journal of Molecular Sciences, 2020, 21, 1168.	1.8	39
9	When Does Alzheimer′s Disease Really Start? The Role of Biomarkers. International Journal of Molecular Sciences, 2019, 20, 5536.	1.8	57
10	Obesity as a Risk Factor for Alzheimer's Disease: Implication of Leptin and Glutamate. Frontiers in Neuroscience, 2019, 13, 508.	1.4	52
11	The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 879.	1.8	100
12	Neural oscillations in the infralimbic cortex after electrical stimulation of the amygdala. Relevance to acute stress processing. Journal of Comparative Neurology, 2018, 526, 1403-1416.	0.9	6
13	A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neuroscience Letters, 2017, 658, 73-78.	1.0	73
14	Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. Journal of Physiology, 2017, 595, 1775-1792.	1.3	28
15	Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex. Physiological Reports, 2016, 4, e12854.	0.7	16
16	Phencyclidine-induced disruption of oscillatory activity in prefrontal cortex: Effects of antipsychotic drugs and receptor ligands. European Neuropsychopharmacology, 2016, 26, 614-625.	0.3	21
17	Regular thetaâ€firing neurons in the nucleus incertus during sustained hippocampal activation. European Journal of Neuroscience, 2015, 41, 1049-1067.	1.2	20
18	Depressive-like symptoms in a reserpine-induced model of fibromyalgia in rats. Physiology and Behavior, 2015, 151, 456-462.	1.0	46

#	Article	IF	CITATIONS
19	Glutamatergic projection from the nucleus incertus to the septohippocampal system. Neuroscience Letters, 2012, 517, 71-76.	1.0	26
20	Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats. Experimental Brain Research, 2011, 211, 177-192.	0.7	27
21	Anatomical evidence for a ponto-septal pathway via the nucleus incertus in the rat. Brain Research, 2008, 1218, 87-96.	1.1	32
22	Nucleus incertus contribution to hippocampal theta rhythm generation. European Journal of Neuroscience, 2006, 23, 2731-2738.	1.2	95