
David J Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3496563/publications.pdf

Version: 2024-02-01

DAVID LLACKSON

#	Article	IF	CITATIONS
1	IL-33–Dependent Type 2 Inflammation during Rhinovirus-induced Asthma Exacerbations <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1373-1382.	2.5	500
2	The role of viruses in acute exacerbations of asthma. Journal of Allergy and Clinical Immunology, 2010, 125, 1178-1187.	1.5	305
3	Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Science Translational Medicine, 2014, 6, 256ra134.	5.8	280
4	Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nature Medicine, 2017, 23, 681-691.	15.2	260
5	Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. Journal of Allergy and Clinical Immunology, 2017, 140, 909-920.	1.5	178
6	Characterization of Severe Asthma Worldwide. Chest, 2020, 157, 790-804.	0.4	165
7	Real-World Effectiveness of Benralizumab in Severe Eosinophilic Asthma. Chest, 2021, 159, 496-506.	0.4	159
8	Real-World Effectiveness and the Characteristics of a "Super-Responder―to Mepolizumab in Severe Eosinophilic Asthma. Chest, 2020, 158, 491-500.	0.4	135
9	Eosinophilic and Noneosinophilic Asthma. Chest, 2021, 160, 814-830.	0.4	109
10	Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clinic Proceedings, 2021, 96, 2694-2707.	1.4	103
11	A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine, 2017, 19, 128-138.	2.7	102
12	Composite type-2 biomarker strategy versus a symptom–risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 57-68.	5.2	88
13	Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era. Thorax, 2021, 76, 220-227.	2.7	83
14	Pathogenesis of Viral Infection in Exacerbations of Airway Disease. Annals of the American Thoracic Society, 2015, 12, S115-S132.	1.5	76
15	Defining a Severe Asthma Super-Responder: Findings from a Delphi Process. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3997-4004.	2.0	74
16	Oral corticosteroid elimination via a personalised reduction algorithm in adults with severe, eosinophilic asthma treated with benralizumab (PONENTE): a multicentre, open-label, single-arm study. Lancet Respiratory Medicine,the, 2022, 10, 47-58.	5.2	74
17	Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annual Review of Immunology, 2021, 39, 719-757.	9.5	69
18	Role of interleukin 33 in respiratory allergy and asthma. Lancet Respiratory Medicine,the, 2014, 2, 226-237.	5.2	60

DAVID J JACKSON

#	Article	IF	CITATIONS
19	Adherence to corticosteroids and clinical outcomes in mepolizumab therapy for severe asthma. European Respiratory Journal, 2020, 55, 1902259.	3.1	55
20	Ability of Serum IgE Concentration to Predict Exacerbation Risk and Benralizumab Efficacy for Patients with Severe Eosinophilic Asthma. Advances in Therapy, 2020, 37, 718-729.	1.3	48
21	Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab. Drug Safety, 2020, 43, 409-425.	1.4	47
22	Rhinovirus Infections and Their Roles in Asthma: Etiology and Exacerbations. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 673-681.	2.0	46
23	The influence of asthma control on the severity of virus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2015, 136, 497-500.e3.	1.5	42
24	Potential Severe Asthma Hidden in UK Primary Care. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1612-1623.e9.	2.0	42
25	Disease-modifying anti-asthmatic drugs. Lancet, The, 2022, 399, 1664-1668.	6.3	42
26	M1-like macrophages are potent producers of anti-viral interferons and M1-associated marker-positive lung macrophages are decreased during rhinovirus-induced asthma exacerbations. EBioMedicine, 2020, 54, 102734.	2.7	37
27	The relationship between Feno and effectiveness of mepolizumab and benralizumab in severe eosinophilic asthma. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2093-2096.e1.	2.0	37
28	Steroid-sparing effects of benralizumab in patients with eosinophilic granulomatosis with polyangiitis. ERJ Open Research, 2020, 6, 00451-2020.	1.1	33
29	Benralizumab after subâ€optimal response to mepolizumab in severe eosinophilic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1890-1893.	2.7	33
30	Risk Predictors and Symptom Features of Long COVID Within a Broad Primary Care Patient Population Including Both Tested and Untested Patients. Journal of Pragmatic and Observational Research, 2021, Volume 12, 93-104.	1.1	32
31	Eosinophils and eosinophilic immune dysfunction in health and disease. European Respiratory Review, 2022, 31, 210150.	3.0	32
32	Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 422-432.	2.0	28
33	Oral corticosteroid-sparing effects of reslizumab in the treatment of eosinophilic granulomatosis with polyangiitis. ERJ Open Research, 2020, 6, 00311-2019.	1.1	26
34	Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms. EBioMedicine, 2015, 2, 64-70.	2.7	24
35	Biologic treatment options for severe asthma. Current Opinion in Immunology, 2020, 66, 151-160.	2.4	23
36	Pulmonary Innate Lymphoid Cell Responses during Rhinovirus-induced Asthma Exacerbations <i>InÂVivo</i> : A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1259-1273.	2.5	22

DAVID J JACKSON

#	Article	IF	CITATIONS
37	Global Variability in Administrative Approval Prescription Criteria for Biologic Therapy in Severe Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1202-1216.e23.	2.0	22
38	Real-World Effectiveness of Anti–IL-5/5R Therapy in Severe Atopic Eosinophilic Asthma with Fungal Sensitization. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2315-2320.e1.	2.0	21
39	Benralizumab Effectiveness in Severe Asthma Is Independent of Previous Biologic Use. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1534-1544.e4.	2.0	21
40	Are emerging PGD2 antagonists a promising therapy class for treating asthma?. Expert Opinion on Emerging Drugs, 2016, 21, 359-364.	1.0	20
41	A pragmatic guide to choosing biologic therapies in severe asthma. Breathe, 2021, 17, 210144.	0.6	20
42	Interleukin-18 Is Associated With Protection Against Rhinovirus-Induced Colds and Asthma Exacerbations. Clinical Infectious Diseases, 2015, 60, 1528-1531.	2.9	19
43	Workup of Severe Asthma. Chest, 2021, 160, 2019-2029.	0.4	18
44	Prescribing Patterns and Treatment Adherence in Patients with Asthma During the COVID-19 Pandemic. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 100-107.e2.	2.0	17
45	Adherence to inhaled corticosteroids and clinical outcomes following a year of benralizumab therapy for severe eosinophilic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2238-2241.	2.7	15
46	Clinical evaluation and diagnosis of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2021, 148, 283-291.	1.5	14
47	The impact of the first COVID-19 surge on severe asthma patients in the UK. Which is worse: the virus or the lockdown?. ERJ Open Research, 2021, 7, 00768-2020.	1.1	14
48	Rhinovirus-induced CCL17 and CCL22 in Asthma Exacerbations and Differential Regulation by STAT6. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 344-356.	1.4	13
49	Prevention and Treatment of Asthma Exacerbations in Adults. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2578-2586.	2.0	13
50	Inflammatory and microbiological associations with near-fatal asthma requiring extracorporeal membrane oxygenation. ERJ Open Research, 2020, 6, 00267-2019.	1.1	11
51	Prevalence and recovery of adrenal insufficiency in steroid-dependent asthma patients receiving biologic therapy. European Respiratory Journal, 2020, 56, 1902273.	3.1	10
52	The prevalence of mucus plugging in severe eosinophilic asthma and its relationship to clinical efficacy of anti–IL-5R treatment. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1102-1103.e1.	2.0	8
53	Assessing adherence to inhaled therapies in asthma and the emergence of electronic monitoring devices. European Respiratory Review, 2022, 31, 210271.	3.0	8
54	Rhinovirus induction of fractalkine (CX3CL1) in airway and peripheral blood mononuclear cells in asthma. PLoS ONE, 2017, 12, e0183864.	1.1	7

DAVID J JACKSON

#	Article	IF	CITATIONS
55	Effect of CRTH2 antagonism on the response to experimental rhinovirus infection in asthma: a pilot randomised controlled trial. Thorax, 2022, 77, 950-959.	2.7	7
56	Improving Care in Eosinophil-Associated Diseases: A Charter. Advances in Therapy, 2022, 39, 2323-2341.	1.3	6
57	Biologics in severe asthma: Which one, When and Where?. Clinical and Experimental Allergy, 2021, 51, 1225-1228.	1.4	5
58	Late Breaking Abstract - Defining a severe asthma super-responder: findings from a Delphi process. , 2020, , .		5
59	COVIDâ€19 in the absence of eosinophils: The outcome of confirmed SARSâ€CoVâ€2 infection whilst on treatment with benralizumab. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2558-2560.	2.7	5
60	Recommendations following a modified UK-Delphi consensus study on best practice for referral and management of severe asthma. BMJ Open Respiratory Research, 2021, 8, e001057.	1.2	4
61	Characteristics of patients in platform C19, a COVID-19 research database combining primary care electronic health record and patient reported information. PLoS ONE, 2021, 16, e0258689.	1.1	2
62	Diagnosing adrenal insufficiency using ACTH stimulation test. European Respiratory Journal, 2020, 56, 2002149.	3.1	2
63	Safety of eosinophil depletion. , 2022, , 238-252.		2
64	Eosinophilic asthma. , 2022, , 73-99.		2
65	Real world effectiveness of anti-IL-5/5R therapies is independent of co-eligibility for anti-IgE therapy. European Respiratory Journal, 2021, 57, 2100166.	3.1	1
66	Introducing the Severe Asthma Series of Invited Reviews. Chest, 2021, 160, 1151-1152.	0.4	1
67	Response. Chest, 2020, 158, 2230-2231.	0.4	0