## Shengyao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3496462/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction.<br>Nature Communications, 2020, 11, 4613.                                                                                       | 5.8  | 776       |
| 2  | Lightâ€Switchable Oxygen Vacancies in Ultrafine Bi <sub>5</sub> O <sub>7</sub> Br Nanotubes for<br>Boosting Solarâ€Driven Nitrogen Fixation in Pure Water. Advanced Materials, 2017, 29, 1701774.                              | 11.1 | 533       |
| 3  | Identification of Halogen-Associated Active Sites on Bismuth-Based Perovskite Quantum Dots for Efficient and Selective CO <sub>2</sub> -to-CO Photoreduction. ACS Nano, 2020, 14, 13103-13114.                                 | 7.3  | 282       |
| 4  | Direct and Selective Photocatalytic Oxidation of CH <sub>4</sub> to Oxygenates with O <sub>2</sub><br>on Cocatalysts/ZnO at Room Temperature in Water. Journal of the American Chemical Society, 2019,<br>141, 20507-20515.    | 6.6  | 253       |
| 5  | A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi 2 MoO 6 with enhanced photocatalytic performance. Applied Surface Science, 2017, 391, 194-201.                                                     | 3.1  | 238       |
| 6  | Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Applied Catalysis B: Environmental, 2019, 259, 118088.                                                                | 10.8 | 221       |
| 7  | Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Advanced Functional<br>Materials, 2018, 28, 1803309.                                                                                               | 7.8  | 212       |
| 8  | Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nature Communications, 2021, 12, 4936.                                                                     | 5.8  | 159       |
| 9  | A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nature Catalysis, 2021, 4, 1032-1042.                                                                                  | 16.1 | 156       |
| 10 | Intermolecular cascaded π-conjugation channels for electron delivery powering CO2<br>photoreduction. Nature Communications, 2020, 11, 1149.                                                                                    | 5.8  | 147       |
| 11 | In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dualâ€Purpose Strategy for<br>Efficient Molecular Oxygen Activation. Advanced Functional Materials, 2017, 27, 1703923.                                     | 7.8  | 136       |
| 12 | Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover<br>Number in CO <sub>2</sub> Photoreduction. Journal of the American Chemical Society, 2020, 142,<br>19259-19267.             | 6.6  | 128       |
| 13 | Selective Photo-oxidation of Methane to Methanol with Oxygen over Dual-Cocatalyst-Modified<br>Titanium Dioxide. ACS Catalysis, 2020, 10, 14318-14326.                                                                          | 5.5  | 114       |
| 14 | Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and<br>stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Applied Catalysis B: Environmental,<br>2020, 265, 118585. | 10.8 | 96        |
| 15 | Frustrated Lewis Pair Sites Boosting CO <sub>2</sub> Photoreduction on<br>Cs <sub>2</sub> CuBr <sub>4</sub> Perovskite Quantum Dots. ACS Catalysis, 2022, 12, 2915-2926.                                                       | 5.5  | 94        |
| 16 | Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. Nano Energy, 2020, 77, 105010.                                                                      | 8.2  | 70        |
| 17 | A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chemical Science, 2020, 11, 791-796.                                                           | 3.7  | 58        |
| 18 | Highly Intensified Molecular Oxygen Activation on Bi@Bi <sub>2</sub> MoO <sub>6</sub> via a<br>Metallic Bi-Coordinated Facet-Dependent Effect. ACS Applied Materials & Interfaces, 2020, 12,<br>1867-1876.                     | 4.0  | 54        |

SHENGYAO WANG

| #  | Article                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A highly stable all-in-one photocatalyst for aryl etherification: the Ni <sup>II</sup> embedded covalent organic framework. Green Chemistry, 2021, 23, 5797-5805.                                                                                                                  | 4.6  | 47        |
| 20 | An artificial photosynthesis system comprising a covalent triazine framework as an electron relay<br>facilitator for photochemical carbon dioxide reduction. Journal of Materials Chemistry C, 2020, 8,<br>192-200.                                                                | 2.7  | 43        |
| 21 | Deep insight into ROS mediated direct and hydroxylated dichlorination process for efficient<br>photocatalytic sodium pentachlorophenate mineralization. Applied Catalysis B: Environmental, 2021,<br>296, 120352.                                                                  | 10.8 | 42        |
| 22 | Stabilizing CuGaS <sub>2</sub> by crystalline CdS through an interfacial Z-scheme charge transfer<br>for enhanced photocatalytic CO <sub>2</sub> reduction under visible light. Nanoscale, 2020, 12,<br>8693-8700.                                                                 | 2.8  | 39        |
| 23 | Simple fabrication of Fe <sub>3</sub> O <sub>4</sub> /C/g-C <sub>3</sub> N <sub>4</sub><br>two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic<br>performance under visible light. Catalysis Science and Technology, 2018, 8, 3484-3492. | 2.1  | 32        |
| 24 | Insights into the Surface/Interface Modifications of Bi <sub>2</sub> MoO <sub>6</sub> : Feasible Strategies and Photocatalytic Applications. Solar Rrl, 2021, 5, 2000442.                                                                                                          | 3.1  | 29        |
| 25 | 2D-C <sub>3</sub> N <sub>4</sub> encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO <sub>2</sub> reduction. Chemical Science, 2022, 13, 1335-1341.                                                                                               | 3.7  | 29        |
| 26 | Comprehensive investigation on robust photocatalytic hydrogen production over C3N5. Chinese<br>Journal of Catalysis, 2022, 43, 410-420.                                                                                                                                            | 6.9  | 25        |
| 27 | Efficient photocatalytic CO <sub>2</sub> reduction mediated by transitional metal borides: metal site-dependent activity and selectivity. Journal of Materials Chemistry A, 2020, 8, 21833-21841.                                                                                  | 5.2  | 23        |
| 28 | Bacteria-Assisted Synthesis of Nanosheet-Assembled TiO <sub>2</sub> Hierarchical Architectures for<br>Constructing TiO <sub>2</sub> -Based Composites for Photocatalytic and Electrocatalytic<br>Applications. ACS Applied Materials & Interfaces, 2019, 11, 37004-37012.          | 4.0  | 19        |
| 29 | Chloridion-induced dual tunable fabrication of oxygen-deficient Bi2WO6 atomic layers for deep oxidation of NO. Chinese Journal of Catalysis, 2021, 42, 1013-1023.                                                                                                                  | 6.9  | 17        |
| 30 | Two consecutive post-synthetic modifications of benzothiadiazole-based conjugated polymers for<br>enhanced photocatalytic H <sub>2</sub> evolution: the significance of the sulfinyl group. Journal of<br>Materials Chemistry A, 2021, 9, 10208-10216.                             | 5.2  | 15        |
| 31 | Interfacing Photosynthetic Membrane Protein with Mesoporous WO <sub>3</sub> Photoelectrode for<br>Solar Water Oxidation. Small, 2018, 14, e1800104.                                                                                                                                | 5.2  | 14        |
| 32 | Integrating single Co sites into crystalline covalent triazine frameworks for photoreduction of CO <sub>2</sub> . Chemical Communications, 2022, 58, 8121-8124.                                                                                                                    | 2.2  | 13        |
| 33 | Construction of oxygen vacancy on Bi12O17Cl2 nanosheets by heat-treatment in H2O vapor for photocatalytic NO oxidation. Journal of Materials Science and Technology, 2022, 123, 234-242.                                                                                           | 5.6  | 12        |
| 34 | Direct catalytic nitrogen oxide removal using thermal, electrical or solar energy. Chinese Chemical<br>Letters, 2022, 33, 1117-1130.                                                                                                                                               | 4.8  | 8         |
| 35 | Superoxide anion and singlet oxygen dominated faster photocatalytic elimination of nitric oxide over defective bismuth molybdates heterojunctions. Journal of Colloid and Interface Science, 2022, 618, 248-258.                                                                   | 5.0  | 4         |
| 36 | Photocatalysis: Light‣witchable Oxygen Vacancies in Ultrafine Bi <sub>5</sub> O <sub>7</sub> Br<br>Nanotubes for Boosting Solarâ€Driven Nitrogen Fixation in Pure Water (Adv. Mater. 31/2017). Advanced<br>Materials, 2017, 29, .                                                  | 11.1 | 2         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ultrafast synthesis of near-zero-cost S-doped Ni(OH) <sub>2</sub> on C <sub>3</sub> N <sub>5</sub><br>under ambient conditions with enhanced photocatalytic activity. RSC Advances, 2021, 11, 36166-36173. | 1.7 | 2         |