Vinicius M Gadotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/349638/publications.pdf Version: 2024-02-01

VINICIUS M CADOTTI

#	Article	IF	CITATIONS
1	A Synthetically Accessible Small-Molecule Inhibitor of USP5-Cav3.2 Calcium Channel Interactions with Analgesic Properties. ACS Chemical Neuroscience, 2022, 13, 524-536.	3.5	12
2	The IL33 receptor ST2 contributes to mechanical hypersensitivity in mice with neuropathic pain. Molecular Brain, 2021, 14, 35.	2.6	5
3	Ethosuximide inhibits acute histamine- and chloroquine-induced scratching behavior in mice. Molecular Brain, 2021, 14, 46.	2.6	3
4	The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2ÂT-type calcium channels. Molecular Brain, 2021, 14, 166.	2.6	16
5	Cav3.2 T-type calcium channels control acute itch in mice. Molecular Brain, 2020, 13, 119.	2.6	13
6	A neuronal circuit for activating descending modulation of neuropathic pain. Nature Neuroscience, 2019, 22, 1659-1668.	14.8	185
7	Neuroimmune Responses Mediate Depression-Related Behaviors following Acute Colitis. IScience, 2019, 16, 12-21.	4.1	19
8	Anxiolytic effects of the flavonoid luteolin in a mouse model of acute colitis. Molecular Brain, 2019, 12, 114.	2.6	24
9	Analgesic effects of optogenetic inhibition of basolateral amygdala inputs into the prefrontal cortex in nerve injured female mice. Molecular Brain, 2019, 12, 105.	2.6	9
10	BK Potassium Channels Suppress Cavα2δ Subunit Function to Reduce Inflammatory and Neuropathic Pain. Cell Reports, 2018, 22, 1956-1964.	6.4	45
11	Disrupting USP5/Cav3.2 interactions protects female mice from mechanical hypersensitivity during peripheral inflammation. Molecular Brain, 2018, 11, 60.	2.6	14
12	Synthesis and biological evaluation of novel N3- substituted dihydropyrimidine derivatives as T-type calcium channel blockers and their efficacy as analgesics in mouse models of inflammatory pain. Bioorganic and Medicinal Chemistry, 2017, 25, 1926-1938.	3.0	26
13	Identification of interleukin-1 beta as a key mediator in the upregulation of Cav3.2–USP5 interactions in the pain pathway. Molecular Pain, 2017, 13, 174480691772469.	2.1	39
14	Synthesis and biological evaluation of fluoro-substituted 3,4-dihydroquinazoline derivatives for cytotoxic and analgesic effects. Bioorganic and Medicinal Chemistry, 2017, 25, 4656-4664.	3.0	8
15	Surfen is a broad-spectrum calcium channel inhibitor with analgesic properties in mouse models of acute and chronic inflammatory pain. Pflugers Archiv European Journal of Physiology, 2017, 469, 1325-1334.	2.8	2
16	Synthesis and characterization of a disubstituted piperazine derivative with T-type channel blocking action and analgesic properties. Molecular Pain, 2016, 12, 174480691664167.	2.1	14
17	A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Molecular Pain, 2016, 12, 174480691664244.	2.1	39
18	Effect of the T-type channel blocker KYS-05090S in mouse models of acute and neuropathic pain. Pflugers Archiv European Journal of Physiology, 2016, 468, 193-199.	2.8	23

VINICIUS M GADOTTI

#	Article	IF	CITATIONS
19	Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. Cell Reports, 2015, 12, 752-759.	6.4	186
20	Small Organic Molecule Disruptors of Cav3.2 - USP5 Interactions Reverse Inflammatory and Neuropathic Pain. Molecular Pain, 2015, 11, s12990-015-0011.	2.1	69
21	Analgesic effect of a broad-spectrum dihydropyridine inhibitor of voltage-gated calcium channels. Pflugers Archiv European Journal of Physiology, 2015, 467, 2485-2493.	2.8	33
22	1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain. Pflugers Archiv European Journal of Physiology, 2015, 467, 1237-1247.	2.8	40
23	Characterization of Novel Cannabinoid Based T-Type Calcium Channel Blockers with Analgesic Effects. ACS Chemical Neuroscience, 2015, 6, 277-287.	3.5	42
24	NMP-7 Inhibits Chronic Inflammatory and Neuropathic Pain via Block of Cav3.2 T-type Calcium Channels and Activation of CB2 Receptors. Molecular Pain, 2014, 10, 1744-8069-10-77.	2.1	32
25	The Deubiquitinating Enzyme USP5 Modulates Neuropathic and Inflammatory Pain by Enhancing Cav3.2 Channel Activity. Neuron, 2014, 83, 1144-1158.	8.1	197
26	Analgesic Effect of a Mixed T-Type Channel Inhibitor/CB ₂ Receptor Agonist. Molecular Pain, 2013, 9, 1744-8069-9-32.	2.1	36
27	TMEM16C cuts pain no SLACK. Nature Neuroscience, 2013, 16, 1165-1166.	14.8	3
28	Prion Protein's Protection Against Pain. , 2013, , .		0
29	Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology, 2012, 62, 419-426.	4.1	252
30	Depressive-like behaviour of mice lacking cellular prion protein. Behavioural Brain Research, 2012, 227, 319-323.	2.2	40
31	Ankle Joint Mobilization Decreases Hypersensitivity by Activation of Peripheral Opioid Receptors in a Mouse Model of Postoperative Pain. Pain Medicine, 2012, 13, 1049-1058.	1.9	43
32	The Antinociceptive Effects of AR-A014418, a Selective Inhibitor of Glycogen Synthase Kinase-3 Beta, in Mice. Journal of Pain, 2011, 12, 315-322.	1.4	46
33	Ankle joint mobilization reduces axonotmesis-induced neuropathic pain and glial activation in the spinal cord and enhances nerve regeneration in rats. Pain, 2011, 152, 2653-2661.	4.2	49
34	Cellular Prion Protein Protects from Inflammatory and Neuropathic Pain. Molecular Pain, 2011, 7, 1744-8069-7-59.	2.1	26
35	Functional Characterization and Analgesic Effects of Mixed Cannabinoid Receptor/T-Type Channel Ligands. Molecular Pain, 2011, 7, 1744-8069-7-89.	2.1	31
36	Antinociceptive action of the extract and the flavonoid quercitrin isolated from Bauhinia microstachya leaves. Journal of Pharmacy and Pharmacology, 2010, 57, 1345-1351.	2.4	43

VINICIUS M GADOTTI

#	Article	IF	CITATIONS
37	High-Intensity Extended Swimming Exercise Reduces Pain-Related Behavior in Mice: Involvement of Endogenous Opioids and the Serotonergic System. Journal of Pain, 2010, 11, 1384-1393.	1.4	75
38	Antinociceptive Properties of the Hydroalcoholic Extract and the Flavonoid Rutin Obtained from <i>Polygala paniculata </i> L. in Mice. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 306-315.	2.5	55
39	Antinociceptive and anti-inflammatory properties from the bulbs of Cipura paludosa Aubl Journal of Ethnopharmacology, 2007, 112, 19-25.	4.1	29
40	Cipura paludosa Extract Prevents Methyl Mercury-Induced Neurotoxicity in Mice. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 127-131.	2.5	41
41	Anti-hypernociceptive properties of agmatine in persistent inflammatory and neuropathic models of pain in mice. Brain Research, 2007, 1159, 124-133.	2.2	35
42	Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test. European Journal of Pharmacology, 2007, 575, 87-93.	3.5	33
43	Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice. Brain Research, 2006, 1093, 116-122.	2.2	29
44	Evidence for the involvement of glutamatergic system in the antinociceptive effect of ascorbic acid. Neuroscience Letters, 2005, 381, 185-188.	2.1	40
45	Mechanisms involved in the antinociception caused by agmatine in mice. Neuropharmacology, 2005, 48, 1021-1034.	4.1	120