
Michael J Vepraskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3496128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil Redox Potential: Importance, Field Measurements, and Observations. Advances in Agronomy, 2007, , 1-54.	2.4	188
2	Magnetic Susceptibility for Use in Delineating Hydric Soils. Soil Science Society of America Journal, 2000, 64, 2174-2180.	1.2	64
3	Aquic Moisture Regimes in Soils with and without Low Chroma Colors. Soil Science Society of America Journal, 1983, 47, 280-285.	1.2	62
4	Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands, 2006, 26, 119-130.	0.7	53
5	Hydraulic Conductivity of Saprolite as Determined by Channels and Porous Groundmass. Soil Science Society of America Journal, 1991, 55, 932-938.	1.2	52
6	Comparison of the Trenchâ€Profile and Core Methods for Evaluating Root Distributions in Tillage Studies. Agronomy Journal, 1988, 80, 166-172.	0.9	46
7	Xâ€ray Microspectroscopy and Chemical Reactions in Soil Microsites. Journal of Environmental Quality, 2011, 40, 667-678.	1.0	45
8	Bulk Density Values Diagnostic of Restricted Root Growth in Coarse-textured Soils. Soil Science Society of America Journal, 1988, 52, 1117-1121.	1.2	40
9	Adapting a Drainage Model to Simulate Water Table Levels in Coastal Plain Soils. Soil Science Society of America Journal, 2002, 66, 1722-1731.	1.2	40
10	Calibrating Hydric Soil Field Indicators to Longâ€īerm Wetland Hydrology. Soil Science Society of America Journal, 2004, 68, 1461-1469.	1.2	39
11	Albic Neoskeletans in Argillic Horizons as Indices of Seasonal Saturation and Iron Reduction1. Soil Science Society of America Journal, 1983, 47, 1202.	1.2	38
12	A Method to Predict Soil Saturation Frequency and Duration from Soil Color. Soil Science Society of America Journal, 2003, 67, 961.	1.2	38
13	Hydrogeology and pedology of saprolite formed from sedimentary rock, eastern Tennessee, USA. Geoderma, 2005, 126, 27-45.	2.3	34
14	Dynamics of hydric soil formation across the edge of a created deep marsh. Wetlands, 1999, 19, 78-89.	0.7	32
15	Morphological Changes in Soils Produced When Hydrology Is Altered by Ditching. Soil Science Society of America Journal, 2000, 64, 1893-1904.	1.2	30
16	Redoximorphic Features. , 2018, , 425-445.		29
17	Solute Transport in the Capillary Fringe and Shallow Groundwater: Field Evaluation. Vadose Zone Journal, 2008, 7, 890-898.	1.3	24
18	Temperature and Water Content Effects on Carbon Mineralization for Sapric Soil Material. Wetlands, 2012, 32, 939-944.	0.7	24

MICHAEL J VEPRASKAS

#	Article	IF	CITATIONS
19	Porosity Factors that Control the Hydraulic Conductivity of Soil-Saprolite Transitional Zones. Soil Science Society of America Journal, 1996, 60, 192-199.	1.2	23
20	Simulating the water budgets of natural Carolina bay wetlands. Wetlands, 2007, 27, 1112-1123.	0.7	23
21	Interpreting morphological features in wetland soils with a hydrologic model. Catena, 2008, 73, 153-165.	2.2	23
22	Dynamics of redoximorphic feature formation under controlled ponding in a created riverine wetland. Wetlands, 2006, 26, 486-496.	0.7	20
23	A Method to Predict Soil Saturation Frequency and Duration from Soil Color. Soil Science Society of America Journal, 2003, 67, 961-969.	1.2	17
24	Linking Plant Ecology and Long-Term Hydrology to Improve Wetland Restoration Success. Transactions of the ASABE, 2011, 54, 2129-2137.	1.1	16
25	Residual Effects of Deep Tillage vs. No-Till on Corn Root Growth and Grain Yield. Journal of Production Agriculture, 1995, 8, 401-405.	0.4	15
26	Sampling Device to Extract Intact Cores in Saturated Organic Soils. Soil Science Society of America Journal, 2005, 69, 2071-2075.	1.2	14
27	Methods to evaluate normal rainfall for short-term wetland hydrology assessment. Wetlands, 2009, 29, 1049-1062.	0.7	14
28	Fate of nitrate in the capillary fringe and shallow groundwater in a drained sandy soil. Geoderma, 2008, 146, 209-215.	2.3	13
29	Corn Root Distribution and Yield Response to Subsoiling for Paleudults Having Different Aggregate Sizes. Soil Science Society of America Journal, 1990, 54, 849-854.	1.2	11
30	Solute Movement through Quartzâ€Diorite Saprolite Containing Quartz Veins and Biological Macropores. Journal of Environmental Quality, 1994, 23, 810-815.	1.0	11
31	Hydropedology: Fundamental issues and practical applications. Catena, 2008, 73, 151-152.	2.2	11
32	Development and application of the Hydric Soil Technical Standard. Soil Science Society of America Journal, 2021, 85, 469-487.	1.2	11
33	Relationships of Soil Properties and Rainfall to Effects of Subsoiling on Tobacco Yield ¹ . Agronomy Journal, 1987, 79, 141-146.	0.9	10
34	Plant-Soil-Hydrology Relationships in Three Carolina Bays in Bladen County, North Carolina. Castanea, 2010, 75, 407-420.	0.2	10
35	Overview of Aquic Conditions and Hydric Soils. SSSA Special Publication Series, 0, , 1-22.	0.2	10
36	Identifying Soils Where Subsoiling Can Increase Yields of Tobacco, Corn, and Cotton. Journal of Production Agriculture, 1992, 5, 482-488.	0.4	10

MICHAEL J VEPRASKAS

#	Article	IF	CITATIONS
37	Phosphorus Dissolution in the Rhizosphere of Bald Cypress Trees in Restored Wetland Soils. Soil Science Society of America Journal, 2015, 79, 343-355.	1.2	9
38	Future directions for hydropedology: quantifying impacts of global change on land use. Hydrology and Earth System Sciences, 2009, 13, 1427-1438.	1.9	9
39	Soil and hydrologic effects on fate and horizontal transport in the capillary fringe of surface-applied nitrate. Geoderma, 2012, 189-190, 343-350.	2.3	8
40	Relationships of Dense Tillage Pans, Soil Properties, and Subsoiling To Tobacco Root Growth. Soil Science Society of America Journal, 1986, 50, 1541-1546.	1.2	7
41	Quartz Vein Impact on Hydraulic Conductivity and Solute Transport through Quartz-Phyllite Saprolite. Journal of Environmental Quality, 1994, 23, 202-207.	1.0	7
42	Surface shading effects on soil C loss in a temperate muck soil. Geoderma, 2011, 163, 238-246.	2.3	7
43	Using Historical Records of Land Use to Improve Wetland Mitigation. Southeastern Geographer, 2005, 45, 25-43.	0.1	7
44	Sampling Device to Extract Inclined, Undisturbed Soil Cores. Soil Science Society of America Journal, 1990, 54, 1192-1195.	1.2	6
45	Dissolution of phosphorus into pore-water flowing through an organic soil. Geoderma, 2013, 197-198, 51-58.	2.3	6
46	A Method to Estimate the Probability that Subsoiling will Increase Crop Yields. Soil Science Society of America Journal, 1988, 52, 229-232.	1.2	5
47	Application of ground penetrating radar to aid restoration planning for a drained Carolina bay. Wetlands, 2006, 26, 205-216.	0.7	5
48	Soil Micromorphology: Concepts, Techniques, and Applications. Soil Science Society of America Book Series, 0, , 191-225.	0.3	5
49	Using Land-Use Change, Soil Characteristics, and a Semi-Automated On-Line GIS Database to Inventory Carolina Bays. Wetlands, 2017, 37, 89-98.	0.7	5
50	Determining Normal Precipitation Ranges for Hydric Soil Assessments. Soil Science Society of America Journal, 2019, 83, 503-510.	1.2	5
51	Dynamics of P dissolution processes in the matrix and rhizospheres of bald cypress growing in saturated soil. Geoderma, 2013, 202-203, 153-160.	2.3	4
52	Evaluating Responses of Four Wetland Plant Species to Different Hydroperiods. Journal of Environmental Quality, 2014, 43, 723-731.	1.0	4
53	Phosphorus Dynamics Near Bald Cypress Roots in a Restored Wetland. Soil Science Society of America Journal, 2017, 81, 1652-1660.	1.2	4
54	Assessing Carolina Bay Wetland Restoration Risks to Downstream Water Quality by Characterizing Land Use and Stream Proximity. Wetlands, 2019, 39, 495-506.	0.7	2

MICHAEL J VEPRASKAS

#	Article	IF	CITATIONS
55	Method to Assess Climate Change Impacts on Hydrologic Boundaries of Individual Wetlands. Wetlands, 2020, 40, 365-376.	0.7	2
56	A COMPARISON OF SOIL WETNESS BY MORPHOLOGICAL AND MODELING METHODS. , 0, , .		1
57	Estimation of Saprolite Thickness Needed to Remove E. coli from Wastewater. Applied Sciences (Switzerland), 2021, 11, 2066.	1.3	1
58	Efficiency of saprolite for removing E. coli from simulated wastewater. Water Science and Technology, 2020, 82, 2545-2551.	1.2	1
59	Hydrology and Vegetation Relationships in a Carolina Bay Wetland 15 Years after Restoration. Wetlands, 2022, 42, 1.	0.7	1
60	A SUGGESTED WATER TABLE MONITORING METHOD BASED ON SOIL COLOR PATTERNS. , 0, , .		0
61	An Example Emphasizing Mass–Volume Relationships for Problem Solving in Soils. Journal of Natural Resources and Life Sciences Education, 2009, 38, 140-143.	0.3	0
62	Characterizing copper and zinc content in forested wetland soils of North Carolina, USA. Environmental Monitoring and Assessment, 2021, 193, 851.	1.3	0