List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3495429/publications.pdf Version: 2024-02-01

FUMINUL

#	Article	IF	CITATIONS
1	Perovskite Solar Cells Employing a PbSO ₄ (PbO) ₄ Quantum Dot-Doped Spiro-OMeTAD Hole Transport Layer with an Efficiency over 22%. ACS Applied Materials & Interfaces, 2022, 14, 2989-2999.	4.0	19
2	Toward highâ€efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO ₂ additives into 3D perovskite layer. EcoMat, 2022, 4, e12166.	6.8	31
3	Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 283-291.	2.4	16
4	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27
5	Morphology modulation of organic photovoltaics with block copolymer additive based on rational design strategies. Organic Electronics, 2021, 88, 106020.	1.4	5
6	Multifunctional <scp>CNT</scp> : <scp>TiO₂</scp> additives in <scp>spiroâ€OMeTAD</scp> layer for highly efficient and stable perovskite solar cells. EcoMat, 2021, 3, e12099.	6.8	53
7	Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3928-3936.	2.5	25
8	Photoferroelectric perovskite solar cells: Principles, advances and insights. Nano Today, 2021, 37, 101062.	6.2	54
9	Effect of (CH ₃) ₂ Sn(COOH) ₂ Electron Transport Layer Thickness on Device Performance in n-i-p Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 7552-7559.	1.5	7
10	Spiroâ€OMeTAD:Sb ₂ S ₃ Hole Transport Layer with Triple Functions of Overcoming Lithium Salt Aggregation, Longâ€Term High Conductivity, and Defect Passivation for Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100622.	3.1	30
11	Ï€â€Conjugated Small Molecules Modified SnO ₂ Layer for Perovskite Solar Cells with over 23% Efficiency. Advanced Energy Materials, 2021, 11, 2101416.	10.2	84
12	Defect Passivation with Metal Cations toward Efficient and Stable Perovskite Solar Cells Exceeding 22.7% Efficiency. ACS Applied Energy Materials, 2021, 4, 11144-11150.	2.5	9
13	Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: Defect passivation and moisture/oxygen blocking. Nano Energy, 2020, 68, 104313.	8.2	56
14	Spectroscopic Study the Air-Processed Degradation Mechanism of Inverted Organic Solar Cells. Frontiers in Physics, 2020, 8, .	1.0	0
15	Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22% Efficiency and Longâ€Term Stability. Advanced Functional Materials, 2020, 30, 2004933.	7.8	55
16	Electric dipole moment-assisted charge extraction and effective defect passivation in perovskite solar cells by depositing a PCBM:TIPD blend film on a CH ₃ NH ₃ PbI ₃ layer. Journal of Materials Chemistry C, 2019, 7, 11559-11568.	2.7	13
17	Enhancing the performance of inverted perovskite solar cells by inserting a ZnO:TIPD film between PCBM layer and Ag electrode. Solar Energy Materials and Solar Cells, 2019, 198, 11-18.	3.0	21
18	Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN ₂ H ₄) ₂ Cl ₂ into the CH ₃ NH ₃ PbI ₃ active layer. Journal of Materials Chemistry A, 2019, 7, 1124-1137.	5.2	36

#	Article	IF	CITATIONS
19	Sb2S3 Thickness-Related Photocurrent and Optoelectronic Processes in TiO2/Sb2S3/P3HT Planar Hybrid Solar Cells. Nanoscale Research Letters, 2019, 14, 325.	3.1	10
20	A novel hierarchical ZnO-nanosheet-nanorod-structured film for quantum-dot-sensitized solar cells. Electrochimica Acta, 2018, 274, 326-333.	2.6	17
21	UV Treatment of Low-Temperature Processed SnO2 Electron Transport Layers for Planar Perovskite Solar Cells. Nanoscale Research Letters, 2018, 13, 216.	3.1	17
22	Double-Sided Transparent TiO2 Nanotube/ITO Electrodes for Efficient CdS/CuInS2 Quantum Dot-Sensitized Solar Cells. Nanoscale Research Letters, 2017, 12, 4.	3.1	88
23	High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. Journal of Power Sources, 2017, 341, 396-403.	4.0	62
24	Comparison of performance and stability of perovskite solar cells with CuInS2 and PH1000 hole transport layers fabricated in a humid atmosphere. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	6
25	Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH ₃ NH ₃ PbI ₃ :CdS perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 12112-12120.	2.7	16
26	Nickel sulfide counter electrode modified with polypyrrole nanoparticles to enhance catalytic ability for flexible dye-sensitized solar cells. RSC Advances, 2016, 6, 61278-61283.	1.7	9
27	Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2016, 11, 239.	3.1	22
28	A comparative study of the effects of Ag2S films prepared by MPD and HRTD methods on the performance of polymer solar cells. Applied Surface Science, 2016, 384, 217-224.	3.1	3
29	PEDOT:PSS assisted preparation of a graphene/nickel cobalt oxide hybrid counter electrode to serve in efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 100159-100168.	1.7	15
30	Cadmium selenide quantum dots solar cells featuring nickel sulfide/polyaniline as efficient counter electrode provide 4.15% efficiency. RSC Advances, 2015, 5, 42101-42108.	1.7	12
31	A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale Research Letters, 2015, 10, 1.	3.1	959
32	Photocurrent enhancement of the CdS/TiO 2 /ITO photoelectrodes achieved by controlling the deposition amount of Ag 2 S nanocrystals. Applied Surface Science, 2015, 356, 574-580.	3.1	6
33	Fabrication of silver sulfide thin films for efficient organic solar cells with high short-circuit currents based on double heterojunctions. Journal of Power Sources, 2015, 298, 259-268.	4.0	13
34	Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber. Nanoscale Research Letters, 2014, 9, 605.	3.1	9
35	Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Nanoscale Research Letters, 2014, 9, 579.	3.1	32
36	Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Advances, 2014, 4, 64068-64074.	1.7	18

#	Article	lF	CITATIONS
37	Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions. Nanoscale Research Letters, 2014, 9, 457.	3.1	22
38	Hybrid bulk-heterojunction solar cells based on all inorganic nanoparticles. Solar Energy Materials and Solar Cells, 2014, 120, 231-237.	3.0	4
39	Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. Journal of Materials Science, 2014, 49, 1868-1874.	1.7	26
40	Interpenetrated Inorganic Hybrids for Efficiency Enhancement of PbS Quantum Dot Solar Cells. Advanced Energy Materials, 2014, 4, 1400512.	10.2	29
41	PEDOT:PSS and glucose assisted preparation of molybdenum disulfide/single-wall carbon nanotubes counter electrode and served in dye-sensitized solar cells. Electrochimica Acta, 2014, 142, 68-75.	2.6	30
42	Enhanced Performance of Flexible Dye-Sensitized Solar Cell based on Nickel Sulfide/Polyaniline/Titanium Counter Electrode. Electrochimica Acta, 2014, 149, 117-125.	2.6	33
43	Enhanced performance of dye-sensitized solar cells based on an electrodeposited-poly(3,4-ethylenedioxythiophene)/platinum composite counter electrode. Synthetic Metals, 2014, 197, 204-209.	2.1	1
44	Improving conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube arrays by doping with Zn2+ and decorating with ZnO nanoparticles. Materials Chemistry and Physics, 2014, 146, 531-537.	2.0	12
45	A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells. Nanoscale Research Letters, 2014, 9, 240.	3.1	9
46	Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Nanoscale Research Letters, 2013, 8, 434.	3.1	7
47	Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots. Nanoscale Research Letters, 2013, 8, 453.	3.1	16
48	Ag2S quantum dots-sensitized TiO2 nanotube array photoelectrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 106-111.	1.7	57
49	Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. Journal of Materials Chemistry, 2011, 21, 16430.	6.7	76
50	Design of a vector-sum integrated microwave photonic phase shifter in silicon-on-insulator waveguides. Applied Optics, 2011, 50, 2523.	2.1	6
51	Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices. Nanoscale Research Letters, 2011, 6, 350.	3.1	10
52	Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Research Letters, 2011, 6, 462.	3.1	83
53	Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes. Organic Electronics, 2011, 12, 1223-1226.	1.4	68
54	Semitransparent inverted polymer solar cells using MoO3/Ag/WO3 as highly transparent anodes. Solar Energy Materials and Solar Cells, 2011, 95, 877-880.	3.0	64

#	Article	IF	CITATIONS
55	Improved conversion efficiency of CdS quantum dots-sensitized TiO ₂ nanotube array using ZnO energy barrier layer. Nanotechnology, 2011, 22, 015202.	1.3	43
56	Influence of Surface Modification with Carboxylic Acids on Performance of Polymer/Titania Photovoltaic Devices. Journal of Electronic Materials, 2010, 39, 1-7.	1.0	7
57	Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry–Perot cavity and Bragg mirrors in silicon-on-insulator waveguide. Applied Optics, 2010, 49, 2391.	2.1	11
58	Characterization of Polymer/TiO ₂ Photovoltaic Cells by Intensity Modulated Photocurrent Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 1624-1631.	1.5	29
59	Analysis and design of thermo-optical variable optical attenuator using three-waveguide directional couplers based on SOI. Optics Express, 2008, 16, 20334.	1.7	13
60	A new and unique electro-optical properties found in polymer/liquid crystal films. , 2008, , .		0
61	Affect on the UV polymerization condition of polymer liquid crystal materials for variable optical attenuator. , 2008, , .		0