## Mohamad Al Al Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3495318/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE, 2017, 12, e0185017.                                                        | 2.5 | 103       |
| 2  | Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and<br>Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43,<br>1-11.                                       | 1.1 | 95        |
| 3  | Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 2017, 9, plx009.                                                                                      | 2.3 | 78        |
| 4  | Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean<br>Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 2017, 8,<br>1438.                            | 3.6 | 65        |
| 5  | Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE, 2016, 11, e0160236.                                                                                                                                       | 2.5 | 60        |
| 6  | Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in<br>Two Related Species. Frontiers in Plant Science, 2016, 7, 473.                                                                       | 3.6 | 45        |
| 7  | Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt<br>Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of<br>Molecular Sciences, 2016, 17, 1582. | 4.1 | 44        |
| 8  | Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 2016, 43, 949.                                                        | 2.1 | 34        |
| 9  | Screening for drought tolerance in cultivars of the ornamental genus <i>Tagetes</i> (Asteraceae).<br>PeerJ, 2016, 4, e2133.                                                                                                                 | 2.0 | 34        |
| 10 | Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst<br>PLoS ONE, 2015, 10, e0135419.                                                                                                      | 2.5 | 27        |
| 11 | Variable Levels of Tolerance to Water Stress (Drought) and Associated Biochemical Markers in<br>Tunisian Barley Landraces. Molecules, 2018, 23, 613.                                                                                        | 3.8 | 25        |
| 12 | Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species.<br>Scientia Horticulturae, 2019, 243, 235-242.                                                                                               | 3.6 | 24        |
| 13 | Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 2018, 117, 193-206.                                                                                                         | 2.5 | 20        |
| 14 | Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations.<br>Sustainability, 2019, 11, 800.                                                                                                     | 3.2 | 19        |
| 15 | Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules, 2021, 26, 254.                                                                                                                                                        | 3.8 | 19        |
| 16 | Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus<br>Olivier attacks. Frontiers in Plant Science, 2015, 6, 817.                                                                                | 3.6 | 18        |
| 17 | Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees - Structure and Function, 2017, 31, 1479-1490.<br>–                                      | 1.9 | 18        |
| 18 | A microarray analysis highlights the role of tetrapyrrole pathways in grapevine responses to<br>"stolbur―phytoplasma, phloem virus infections and recovered status. Physiological and Molecular<br>Plant Pathology, 2016, 93, 129-137.      | 2.5 | 17        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings. Forests, 2018, 9, 320.                                                                                                                   | 2.1 | 17        |
| 20 | Qualitative and Quantitative Differences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species. Plants, 2019, 8, 506.                                    | 3.5 | 17        |
| 21 | Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms. Plants, 2020, 9, 1660.                                                                                                                        | 3.5 | 16        |
| 22 | Physiological and morphological characterisation of Limonium species in their natural habitats:<br>Insights into their abiotic stress responses. Plant and Soil, 2020, 449, 267-284.                                        | 3.7 | 16        |
| 23 | Contribution of Osmolyte Accumulation to Abiotic Stress Tolerance in Wild Plants Adapted to Different Stressful Environments. , 2016, , 13-25.                                                                              |     | 14        |
| 24 | Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus<br>(runner bean) cultivars. The EuroBiotech Journal, 2017, 1, 247-252.                                                       | 1.0 | 14        |
| 25 | Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture<br>(Switzerland), 2018, 8, 201.                                                                                           | 3.1 | 11        |
| 26 | The genus <i>Portulaca</i> as a suitable model to study the mechanisms of plant tolerance to drought and salinity. The EuroBiotech Journal, 2018, 2, 104-113.                                                               | 1.0 | 11        |
| 27 | Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and<br>Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43,                                | 1.1 | 10        |
| 28 | Growth and Reproductive Success under Saline Conditions of Three <i>Plantago</i> Species<br>with Different Levels of Stress Tolerance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42,                          | 1.1 | 7         |
| 29 | Anatomical Modifications in two <i style="mso-bidi-font-style:normal">Juncus</i> Species under Salt<br>Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 501-506.                              | 1.1 | 6         |
| 30 | Biochemical Markers of Salt Stress in European Larch (Larix decidua). Notulae Scientia Biologicae,<br>2018, 10, 430-438.                                                                                                    | 0.4 | 4         |
| 31 | Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian<br>Provenances. Forests, 2019, 10, 511.                                                                                   | 2.1 | 4         |
| 32 | Drought Tolerance in Several Tagetes L. Cultivars. Bulletin of University of Agricultural Sciences and<br>Veterinary Medicine Cluj-Napoca: Horticulture, 2014, 71, .                                                        | 0.1 | 3         |
| 33 | Investigating applied drought in <i>Miscanthus sinensis;</i> sensitivity, response mechanisms, and subsequent recovery. GCB Bioenergy, 0, , .                                                                               | 5.6 | 2         |
| 34 | Competition Between Halophytes and Invasive Species. , 2021, , 599-621.                                                                                                                                                     |     | 1         |
| 35 | Effects of Salt on Seed Germination and Seedling Growth of Three Portulaca Species. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2015, 72, .                          | 0.1 | 1         |
| 36 | Comparative Analysis of the Antioxidant Response to Salt Stress in Inula crithmoides and Dittrichia viscosa. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2015, 72, . | 0.1 | 0         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Expression of the Vacuolar Na+/H+ Antiporter Gene (NHX1) in Three Plantago Species Differing in Salt<br>Tolerance. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca:<br>Horticulture, 2015, 72, .     | 0.1 | 0         |
| 38 | Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2016, 73, 249.                                                | 0.1 | 0         |
| 39 | Drought responses in six hazelnut (Corylus avellana L.) cultivars. Bulletin of University of<br>Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2016, 73, 259.                                                  | 0.1 | 0         |
| 40 | Competition Between Halophytes and Invasive Species. , 2020, , 1-23.                                                                                                                                                                     |     | 0         |
| 41 | Physiological Changes and Osmoregulation in Several Romanian Spruce Populations Exposed to Salt<br>and Drought Stress. Bulletin of University of Agricultural Sciences and Veterinary Medicine<br>Cluj-Napoca: Horticulture, 2014, 71, . | 0.1 | 0         |
| 42 | Responses to Drought and Salinity in the Endangered Species Ligularia sibirica (L.) Cass Bulletin of<br>University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2016, 73, 252.                            | 0.1 | 0         |