Jun Yeon Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3495140/publications.pdf

Version: 2024-02-01

257357 254106 2,048 65 24 43 citations g-index h-index papers 69 69 69 3562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nature Materials, 2019, 18, 156-162.	13.3	215
2	Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Science Advances, 2018, 4, eaap9360.	4.7	195
3	Flame Retardant Epoxy Derived from Tannic Acid as Biobased Hardener. ACS Sustainable Chemistry and Engineering, 2019, 7, 3858-3865.	3.2	108
4	Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation. Scientific Reports, 2014, 4, 5133.	1.6	101
5	Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Science Advances, 2018, 4, eaau2104.	4.7	90
6	Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy. Composites Science and Technology, 2019, 175, 18-27.	3.8	88
7	Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydrate Polymers, 2018, 195, 136-142.	5.1	86
8	The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites. Composites Part B: Engineering, 2019, 163, 511-521.	5.9	81
9	Highly flexible and stretchable thermally conductive composite film by polyurethane supported 3D networks of boron nitride. Composites Science and Technology, 2017, 152, 94-100.	3.8	56
10	Antimicrobial properties of lignin-decorated thin multi-walled carbon nanotubes in poly(vinyl) Tj ETQq0 0 0 rgBT	Overlock 2.6	10 ₄₉ 50 382
11	Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer. Nano Energy, 2016, 20, 221-232.	8.2	44
12	Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance. Scientific Reports, 2015, 5, 12710.	1.6	40
13	High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition. Carbon, 2020, 159, 579-585.	5.4	40
14	Strengthening of Al0.15CoCrCuFeNiTi –C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. Journal of Alloys and Compounds, 2018, 762, 29-37.	2.8	36
15	Highly active and thermally stable single-atom catalysts for high-temperature electrochemical devices. Energy and Environmental Science, 2020, 13, 4903-4920.	15.6	35
16	Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Science Advances, 2022, 8, eabn0939.	4.7	34
17	Structural effect of two-dimensional BNNS on grain growth suppressing behaviors in Al-matrix nanocomposites. Scientific Reports, 2018, 8, 1614.	1.6	33
18	Sulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes. ACS Applied Energy Materials, 2018, 1, 1846-1852.	2.5	32

#	Article	IF	CITATIONS
19	Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites. Journal of Materials Research, 2014, 29, 761-769.	1.2	31
20	3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6,6 composites. Composites Part B: Engineering, 2020, 187, 107839.	5.9	31
21	Anisotropic microstructure dependent mechanical behavior of 3D-printed basalt fiber-reinforced thermoplastic composites. Composites Part B: Engineering, 2021, 224, 109184.	5.9	30
22	Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals. Carbohydrate Polymers, 2020, 228, 115424.	5.1	29
23	Laser-Deposited In Situ TiC-Reinforced Nickel Matrix Composites: 3D Microstructure and Tribological Properties. Jom, 2014, 66, 935-942.	0.9	28
24	Structural Recovery of Highly Oxidized Single-Walled Carbon Nanotubes Fabricated by Kneading and Electrochemical Applications. Chemistry of Materials, 2019, 31, 3468-3475.	3.2	28
25	A study of the correlation between the oxidation degree and thickness of graphene oxides. Carbon, 2022, 189, 579-585.	5.4	26
26	In situ nitridation of titanium–molybdenum alloys during laser deposition. Journal of Materials Science, 2012, 47, 7157-7166.	1.7	24
27	Synthesis of nanobelt-like 1-dimensional silver/nanocarbon hybrid materials for flexible and wearable electronics. Scientific Reports, 2017, 7, 4931.	1.6	23
28	Recovery Mechanism of Degraded Black Phosphorus Fieldâ€Effect Transistors by 1,2â€Ethanedithiol Chemistry and Extended Device Stability. Small, 2018, 14, 1703194.	5.2	23
29	Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor. Carbon, 2019, 145, 462-469.	5.4	23
30	Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen. Carbon, 2020, 167, 881-887.	5.4	22
31	Enhanced Photovoltaic Performance of Inverted Polymer Solar Cells Utilizing Multifunctional Quantumâ€Dot Monolayers. Advanced Energy Materials, 2015, 5, 1401130.	10.2	20
32	Directly-prelithiated carbon nanotube film for high-performance flexible lithium-ion battery electrodes. Fibers and Polymers, 2017, 18, 2334-2341.	1.1	20
33	Carbon nanotube fibers with high specific electrical conductivity: Synergistic effect of heteroatom doping and densification. Carbon, 2021, 184, 207-213.	5.4	20
34	Multilayered graphene grafted copper wires. Carbon, 2018, 139, 666-671.	5.4	19
35	Solution-processable method for producing high-quality reduced graphene oxide displaying â€~self-catalytic healing'. Carbon, 2019, 141, 774-781.	5.4	19
36	Amino acids derived nitrogen-doped carbon materials for electrochemical capacitive energy storage. Materials Letters, 2015, 145, 273-278.	1.3	17

#	Article	IF	CITATIONS
37	Effects of Hard Segment of Polyurethane with Disulfide Bonds on Shape Memory and Self-Healing Ability. Macromolecular Research, 2020, 28, 234-240.	1.0	17
38	Enhanced mechanical properties and thermal conductivity of polyimide nanocomposites incorporating individualized boron-doped graphene. Carbon Letters, 2020, 30, 457-464.	3.3	16
39	Encapsulation and Enhanced Delivery of Topoisomerase I Inhibitors in Functionalized Carbon Nanotubes. ACS Omega, 2018, 3, 5938-5945.	1.6	15
40	One step synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications. Journal of Materials Chemistry C, 2016, 4, 1511-1516.	2.7	14
41	Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination. Nanoscale, 2016, 8, 2055-2062.	2.8	14
42	Dehydrogenative Oxidation of Alcohols Catalyzed by Highly Dispersed Ruthenium Incorporated Titanium Oxide. Catalysts, 2017, 7, 7.	1.6	14
43	Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys. Journal of Materials Research, 2019, 34, 720-731.	1.2	14
44	Deriving structural perfection in the structure of polyacrylonitril-based electrospun carbon nanofibers. Carbon, 2019, 147, 612-615.	5.4	14
45	Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects. Npj 2D Materials and Applications, 2021, 5, .	3.9	13
46	Influence of composition on monomodal versus multimodal γ′ precipitation in Ni–Al–Cr alloys. Journal of Materials Science, 2013, 48, 825-831.	1.7	12
47	Three-dimensional microstructure evolution and mechanical behavior of nanoporous Cu foams. Acta Materialia, 2016, 113, 170-179.	3.8	12
48	Anisotropic mechanical properties and strengthening mechanism in superaligned carbon nanotubes-reinforced aluminum. Carbon, 2019, 153, 513-524.	5.4	12
49	Outstanding Strengthening and Toughening Behavior of 3Dâ€Printed Fiberâ€Reinforced Composites Designed by Biomimetic Interfacial Heterogeneity. Advanced Science, 2022, 9, e2103561.	5.6	11
50	Complex anisotropic fracture behaviors of 3D-printed fiber-reinforced composites based on multi-scale hierarchical microstructure. Composites Science and Technology, 2022, 218, 109176.	3.8	10
51	Ultrafast Heating for Intrinsic Properties of Atomically Thin Two-Dimensional Materials on Plastic Substrates. ACS Applied Materials & Substrates. ACS ACS Applied Materials & Substrates. ACS	4.0	7
52	Structure and properties of graphene oxide/cellulose hybrid fibers via divalent metal ions treatment. Cellulose, 2018, 25, 517-525.	2.4	7
53	Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications. Small, 2018, 14, e1801529.	5.2	7
54	Charge transport effect and photovoltaic conversion of two-dimensional CdSeS quantum dot monolayers in inverted polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 11797-11805.	2.7	7

#	Article	IF	CITATIONS
55	A facile in-situ activation of protonated histidine-derived porous carbon for electrochemical capacitive energy storage. Journal of Industrial and Engineering Chemistry, 2019, 73, 316-327.	2.9	6
56	Identification of Collapsed Carbon Nanotubes in High-Strength Fibers Spun from Compositionally Polydisperse Aerogels. ACS Applied Nano Materials, 2021, 4, 6947-6955.	2.4	6
57	Two-Dimensional Stacked Composites of Self-Assembled Alkane Layers and Graphene for Transparent Gas Barrier Films with Low Permeability. Nano Letters, 2022, 22, 286-293.	4.5	6
58	Electro-conductively deposited carbon fibers for power controllable heating elements. RSC Advances, 2015, 5, 26998-27002.	1.7	5
59	Crystalline structure and mechanical properties of poly(ethylene terephthalate) filament embedded with nanosize clay particles. Journal of Applied Polymer Science, 2018, 135, 46321.	1.3	3
60	Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition. Materials Research Bulletin, 2012, 47, 2756-2759.	2.7	2
61	Direct conjugation with a zero length linker of fullerene C ₇₀ to ZnO quantum dots for multicolor light-emitting diodes. Materials Horizons, 2020, 7, 1533-1541.	6.4	2
62	A Multifunctional Tyrosineâ€mmobilized PAH Molecule as a Universal Cathode Interlayer Enables Highâ€Efficiency Inverted Polymer Solar Cells. Advanced Optical Materials, 2021, 9, 2101006.	3.6	2
63	Quantum Dots: Enhanced Photovoltaic Performance of Inverted Polymer Solar Cells Utilizing Multifunctional Quantum-Dot Monolayers (Adv. Energy Mater. 2/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
64	Photocatalytic Property of Nitrogen and Nickel Codoped Titanium Oxides. Bulletin of the Korean Chemical Society, 2016, 37, 1768-1771.	1.0	1
65	A Multifunctional Tyrosineâ€Immobilized PAH Molecule as a Universal Cathode Interlayer Enables Highâ€Efficiency Inverted Polymer Solar Cells (Advanced Optical Materials 21/2021). Advanced Optical Materials, 2021, 9, 2170088.	3.6	0