
Mohamed E Shaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3495096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Celastrol ameliorates murine colitis via modulating oxidative stress, inflammatory cytokines and intestinal homeostasis. Chemico-Biological Interactions, 2014, 210, 26-33.	1.7	75
2	Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis. Toxicology and Applied Pharmacology, 2011, 252, 165-175.	1.3	66
3	Nilotinib counteracts thioacetamideâ€induced hepatic oxidative stress and attenuates liver fibrosis progression. Fundamental and Clinical Pharmacology, 2011, 25, 248-257.	1.0	50
4	Nilotinib induces apoptosis and autophagic cell death of activated hepatic stellate cells via inhibition of histone deacetylases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1992-2003.	1.9	49
5	Comparison of vitamin E, L-carnitine and melatonin in ameliorating carbon tetrachloride and diabetes induced hepatic oxidative stress. Journal of Physiology and Biochemistry, 2009, 65, 225-233.	1.3	41
6	Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorganic Chemistry, 2022, 120, 105616.	2.0	38
7	Comparison of early treatment with low doses of nilotinib, imatinib and a clinically relevant dose of silymarin in thioacetamide-induced liver fibrosis. European Journal of Pharmacology, 2011, 670, 593-600.	1.7	32
8	Modulation of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis by olmesartan and omega-3. Chemico-Biological Interactions, 2014, 207, 81-91.	1.7	32
9	Therapeutic Opportunities in Damage-Associated Molecular Pattern-Driven Metabolic Diseases. Antioxidants and Redox Signaling, 2015, 23, 1305-1315.	2.5	28
10	The novel TLR9 antagonist COV08-0064 protects from ischemia/reperfusion injury in non-steatotic and steatotic mice livers. Biochemical Pharmacology, 2016, 112, 90-101.	2.0	22
11	Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G. Toxicology Letters, 2017, 275, 6-18.	0.4	22
12	The SMAC mimetic BV6 induces cell death and sensitizes different cell lines to TNF-α and TRAIL-induced apoptosis. Experimental Biology and Medicine, 2016, 241, 2015-2022.	1.1	21
13	Nilotinib Interferes with the Signalling Pathways Implicated in Acetaminophen Hepatotoxicity. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 263-270.	1.2	20
14	Inhibition of the JAK/STAT pathway by ruxolitinib ameliorates thioacetamide-induced hepatotoxicity. Food and Chemical Toxicology, 2016, 96, 290-301.	1.8	19
15	The novel Janus kinase inhibitor ruxolitinib confers protection against carbon tetrachloride-induced hepatotoxicity via multiple mechanisms. Chemico-Biological Interactions, 2014, 220, 116-127.	1.7	18
16	Clomiphene Citrate co-treatment with low dose urinary FSH versus urinary FSH for clomiphene resistant PCOS: randomized controlled trial. Journal of Assisted Reproduction and Genetics, 2013, 30, 1477-1485.	1.2	16
17	The selective c-Met inhibitor capmatinib offsets cisplatin-nephrotoxicity and doxorubicin-cardiotoxicity and improves their anticancer efficacies. Toxicology and Applied Pharmacology, 2020, 398, 115018.	1.3	16
18	A New CDK2 Inhibitor with 3-Hydrazonoindolin-2-One Scaffold Endowed with Anti-Breast Cancer Activity: Design, Synthesis, Biological Evaluation, and In Silico Insights. Molecules, 2021, 26, 412.	1.7	16

MOHAMED E SHAKER

#	Article	IF	CITATIONS
19	Polymorphisms of glutathione S-transferase π 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility. Oncology Letters, 2016, 11, 2182-2188.	0.8	13
20	The novel c-Met inhibitor capmatinib mitigates diethylnitrosamine acute liver injury in mice. Toxicology Letters, 2016, 261, 13-25.	0.4	12
21	Design, Synthesis, and In Vitro Cytotoxic Activity of Certain 2-[3-Phenyl-4-(pyrimidin-4-yl)-1H-pyrazol1-yl]acetamide Derivatives. Russian Journal of Organic Chemistry, 2020, 56, 514-520.	0.3	11
22	The c-Met inhibitor capmatinib alleviates acetaminophen-induced hepatotoxicity. International Immunopharmacology, 2020, 81, 106292.	1.7	11
23	Ingestion of mannose ameliorates thioacetamide-induced intrahepatic oxidative stress, inflammation and fibrosis in rats. Life Sciences, 2021, 286, 120040.	2.0	10
24	The contribution of sterile inflammation to the fatty liver disease and the potential therapies. Biomedicine and Pharmacotherapy, 2022, 148, 112789.	2.5	10
25	Combining the HSP90 inhibitor TAS-116 with metformin effectively degrades the NLRP3 and attenuates inflammasome activation in rats: A new management paradigm for ulcerative colitis. Biomedicine and Pharmacotherapy, 2022, 153, 113247.	2.5	9
26	Synthesis and In Vitro Antiproliferative Activity of New 1-Phenyl-3-(4-(pyridin-3-yl)phenyl)urea Scaffold-Based Compounds. Molecules, 2018, 23, 297.	1.7	7
27	Impact of interferon β-1b, interferon β-1a and fingolimod therapies on serum interleukins-22, 32α and 34 concentrations in patients with relapsing-remitting multiple sclerosis. Journal of Neuroimmunology, 2019, 337, 577062.	1.1	7
28	Inhibition of Bruton tyrosine kinase by acalabrutinib dampens lipopolysaccharide/galactosamine-induced hepatic damage. Biomedicine and Pharmacotherapy, 2020, 131, 110736.	2.5	7
29	Serum and aqueous humor concentrations of interleukin-27 in diabetic retinopathy patients. International Ophthalmology, 2018, 38, 1817-1823.	0.6	7
30	The NEDD8-activating enzyme inhibition with MLN4924 sensitizes human cancer cells of different origins to apoptosis and necroptosis. Archives of Biochemistry and Biophysics, 2020, 691, 108513.	1.4	6
31	Synthesis and Evaluation of New 2-Iminothiazolidin-4-one and Thiazolidin-2,4-dione Derivatives as Antimicrobial and Anti-inflammatory Agents. Open Chemistry Journal, 2014, 1, 33-38.	4.3	5
32	Digoxin mitigates diethylnitrosamine-induced acute liver injury in mice via limiting production of inflammatory mediators. Saudi Pharmaceutical Journal, 2022, 30, 291-299.	1.2	4
33	The JAK inhibitor ruxolitinib abrogates immune hepatitis instigated by concanavalin A in mice. International Immunopharmacology, 2022, 103, 108463.	1.7	3
34	Design, synthesis, and biological evaluation of novel pyrido-dipyrimidines as dual topoisomerase II/FLT3 inhibitors in leukemia cells. Bioorganic Chemistry, 2022, 122, 105752.	2.0	2
35	Synthesis and Biological Evaluation of New N-(4-Substituted phenyl)glycine Derivatives as Potential Anti-inflammatory Agents. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2016, 15, 127-134.	1.1	1