
Ivana Cesarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494841/publications.pdf Version: 2024-02-01

WANA CESADINO

#	Article	IF	CITATIONS
1	Competitive Hostâ€guest Electrochemical Detection of Ivermectin Drug Using a β yclodextrin/Grapheneâ€based Electrode. Electroanalysis, 2023, 35, .	1.5	3
2	Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples. International Journal of Environmental Analytical Chemistry, 2022, 102, 293-305.	1.8	30
3	Electrochemical sensor based on Sb nanoparticles/reduced graphene oxide for heavy metal determination. International Journal of Environmental Analytical Chemistry, 2022, 102, 3109-3123.	1.8	17
4	Fabrication of paper-based analytical devices using a PLA 3D-printed stencil for electrochemical determination of chloroquine and escitalopram. Journal of Solid State Electrochemistry, 2022, 26, 581-586.	1.2	11
5	Eucalyptus Bark Residue Application for Poly(Vinyl Chloride) Composite Production: Influence of Fiber Size and Content. Current Applied Polymer Science, 2022, 5, 125-138.	0.2	1
6	Copper nanostructures anchored on renewable carbon as electrochemical platform for the detection of dopamine, fluoxetine and escitalopram. Sensors and Actuators Reports, 2022, 4, 100107.	2.3	6
7	Acetylcholinesterase Biosensor Based on Functionalized Renewable Carbon Platform for Detection of Carbaryl in Food. Biosensors, 2022, 12, 486.	2.3	5
8	A New Approach for Conversion of Eucalyptus Lignocellulosic Biomass into Cellulose Nanostructures: A Method that Can Be Applied in Industry. Journal of Natural Fibers, 2021, 18, 1501-1511.	1.7	19
9	A functionalized renewable carbon-based surface for sensor development. Journal of Solid State Electrochemistry, 2021, 25, 1093-1099.	1.2	6
10	Toxicity of cigarette butts and possible recycling solutions—a literature review. Environmental Science and Pollution Research, 2021, 28, 10450-10473.	2.7	13
11	Eucalyptus Bark as Source of Bio-oil or Phenolic Compounds. Current Applied Polymer Science, 2021, 4, 128-133.	0.2	0
12	Shrinkage Stress and Temperature Variation in Resin Composites Cured via Different Photoactivation Methods: Insights for Standardisation of the Photopolymerisation. Polymers, 2021, 13, 2065.	2.0	5
13	Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. Science of the Total Environment, 2021, 774, 145586.	3.9	54
14	A Novel Method for the Detection of SARS-CoV-2 Based on Graphene-Impedimetric Immunosensor. Materials, 2021, 14, 4230.	1.3	28
15	Second-generation ethanol from pineapple leaf fibers. Journal of Natural Fibers, 2020, 17, 113-121.	1.7	5
16	Evaluation of <i>Phormium Cookianum</i> Fibers as Reinforcements for Polypropylene-based Composites. Journal of Natural Fibers, 2020, 17, 1039-1047.	1.7	2
17	Evaluation of a biosensor based on reduced graphene oxide and glucose oxidase enzyme on the monitoring of second-generation ethanol production. Journal of Solid State Electrochemistry, 2020, 24, 2011-2018.	1.2	5
18	Determination of isotretinoin (13-cis-retinoic acid) using a sensor based on reduced graphene oxide modified with copper nanoparticles. Journal of Electroanalytical Chemistry, 2020, 856, 113692.	1.9	8

IVANA CESARINO

#	Article	IF	CITATIONS
19	Evaluation of a Reduced Graphene Oxide-Sb Nanoparticles Electrochemical Sensor for the Detection of Cadmium and Lead in Chamomile Tea. Chemosensors, 2020, 8, 53.	1.8	19
20	Reduced Graphene Oxide-Based Impedimetric Immunosensor for Detection of Enterotoxin A in Milk Samples. Materials, 2020, 13, 1751.	1.3	15
21	Evaluation of a Nanocomposite Based on Reduced Graphene Oxide and Gold Nanoparticles as an Electrochemical Platform for Detection of Sulfamethazine. Journal of Composites Science, 2019, 3, 59.	1.4	11
22	Deterioration of Wood Plastics Composites by the White-Rot Fungus Pycnoporus sanguineus. Journal of Composites Science, 2019, 3, 24.	1.4	8
23	Second generation ethanol made from coir husk under the biomass Cascade approach. Molecular Crystals and Liquid Crystals, 2019, 693, 107-114.	0.4	3
24	Development of high bioâ€content polypropylene composites with different industrial lignins. Polymers for Advanced Technologies, 2019, 30, 70-78.	1.6	22
25	Water hyacinth second-generation ethanol production: a mitigation alternative for an environmental problem. Journal of Natural Fibers, 2019, 16, 1201-1208.	1.7	7
26	Graphene Functionalization and Nanopolymers. Carbon Nanostructures, 2019, , 157-178.	0.1	3
27	Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. Journal of Electroanalytical Chemistry, 2018, 809, 67-73.	1.9	49
28	Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. Journal of Solid State Electrochemistry, 2018, 22, 141-148.	1.2	29
29	Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sensors and Actuators B: Chemical, 2018, 277, 555-561.	4.0	88
30	Evaluation of Reduced Graphene Oxide Modified with Antimony and Copper Nanoparticles for Levofloxacin Oxidation. Electroanalysis, 2018, 30, 2066-2076.	1.5	30
31	Minimization of polymerization shrinkage effects on composite resins by the control of irradiance during the photoactivation process. Journal of Applied Oral Science, 2018, 26, e20170528.	0.7	11
32	Synthesis of Silver Nanoparticleâ€Graphene Composites for Electroanalysis Applications using Chemical and Electrochemical Methods. Electroanalysis, 2017, 29, 1014-1021.	1.5	31
33	Production of second-generation ethanol from saccharine sorghum bagasse. Molecular Crystals and Liquid Crystals, 2017, 655, 236-242.	0.4	2
34	Recent approaches and future trends for lignin-based materials. Molecular Crystals and Liquid Crystals, 2017, 655, 204-223.	0.4	17
35	Innovation Under the Bioeconomy Context in Brazil. Economic Complexity and Evolution, 2017, , 97-116.	0.1	1
36	Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochimica Acta, 2016, 192, 8-14.	2.6	41

IVANA CESARINO

#	Article	IF	CITATIONS
37	A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sensors and Actuators B: Chemical, 2015, 210, 453-459.	4.0	51
38	An additional tool towards overcoming absence of specificity of carbon nanostructure-based electrochemical sensors—application to estriol and estradiol detection and distinction. Journal of Solid State Electrochemistry, 2015, 19, 3045-3050.	1.2	12
39	High-Area Ti/Pt Electrodes for the Electrochemically Catalyzed Transesterification of Soybean Oil with Methanol. Chemical Engineering Communications, 2015, 202, 1406-1413.	1.5	3
40	Carbon Nanotubes Modified with SnO ₂ Rods for Levofloxacin Detection. Journal of the Brazilian Chemical Society, 2014, , .	0.6	8
41	Pectin-based Polymer Electrolytes with Ir(III) Complexes. Molecular Crystals and Liquid Crystals, 2014, 604, 117-125.	0.4	16
42	Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose, 2014, 21, 4531-4544.	2.4	34
43	Properties of Electrodeposited WO ₃ Thin Films. Molecular Crystals and Liquid Crystals, 2014, 604, 71-83.	0.4	22
44	Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. Materials Science and Engineering C, 2014, 40, 49-54.	3.8	63
45	Influence of the annealing temperature and metal salt precursor on the structural characteristics and anti-corrosion barrier effect of CeO2 sol–gel protective coatings of carbon steel. Ceramics International, 2014, 40, 13437-13446.	2.3	22
46	Toward pH-controllable bioelectrocatalysis for hydrogen peroxide based on polymer brushes. Electrochemistry Communications, 2013, 29, 41-44.	2.3	18
47	Antibiotic Detection in Urine Using Electrochemical Sensors Based on Vertically Aligned Carbon Nanotubes. Electroanalysis, 2013, 25, 2092-2099.	1.5	34
48	Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Materials Chemistry and Physics, 2013, 141, 304-309.	2.0	17
49	Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors and Actuators B: Chemical, 2013, 188, 1293-1299.	4.0	66
50	Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A. Sensors and Actuators B: Chemical, 2013, 177, 14-18.	4.0	33
51	Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.	1.9	15
52	Biosensor Based on Electrocodeposition of Carbon Nanotubes/Polypyrrole/Laccase for Neurotransmitter Detection. Electroanalysis, 2013, 25, 394-400.	1.5	31
53	Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chemistry, 2012, 135, 873-879.	4.2	207
54	Carbon nanotubes modified with antimony nanoparticles: A novel material for electrochemical sensing. Electrochimica Acta, 2012, 85, 560-565.	2.6	35

IVANA CESARINO

#	Article	IF	CITATIONS
55	Class/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations. Lab on A Chip, 2012, 12, 1959.	3.1	27
56	Highly Sensitive Neurotransmitters Analysis at Platinumâ€Ultramicroelectrodes Arrays. Electroanalysis, 2012, 24, 1115-1120.	1.5	2
57	Real-time electrochemical determination of phenolic compounds after benzene oxidation. Journal of Electroanalytical Chemistry, 2012, 672, 34-39.	1.9	23
58	Enzymatic Solid-Phase Reactor Based on Silica Organofunctionalized with p-Phenylenediamine for Electrochemical Detection of Phenolic Compounds. Sensor Letters, 2012, 10, 1031-1038.	0.4	2
59	A New Indirect Electrochemical Method for Determination of Ozone in Water Using Multiwalled Carbon Nanotubes. Electroanalysis, 2011, 23, 1512-1517.	1.5	17
60	A Biosensor Based on Polyaniline arbon Nanotube Core‧hell for Electrochemical Detection of Pesticides. Electroanalysis, 2011, 23, 2586-2593.	1.5	37
61	Characterization of graphite–polyurethane composite electrodes modified with organofunctionalized SBA-15 nanostructured silica in the presence of heavy metal ions. Application to anodic stripping voltammetry. Mikrochimica Acta, 2010, 171, 1-9.	2.5	15
62	Simultaneous Determination of Cadmium, Lead, Copper and Mercury Ions Using Organofunctionalized SBAâ€15 Nanostructured Silica Modified Graphite–Polyurethane Composite Electrode. Electroanalysis, 2010, 22, 61-68.	1.5	72
63	Characterization and Application of Bismuthâ€Film Modified Graphiteâ€Polyurethane Composite Electrodes. Electroanalysis, 2010, 22, 1437-1445.	1.5	40
64	A novel graphite–polyurethane composite electrode modified with thiol-organofunctionalized silica for the determination of copper ions in ethanol fuel. Fuel, 2010, 89, 1883-1888.	3.4	27
65	Thiolâ€Functionalized Silica Thin Film Modified Electrode in Determination of Mercury Ions in Natural Water. Electroanalysis, 2008, 20, 2301-2309.	1.5	26
66	Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta, 2008, 75, 15-21.	2.9	130
67	Characterization of thiol-functionalised silica films deposited on electrode surfaces. Materials Research, 2008, 11, 465-469.	0.6	3
68	Using the organofunctionalised SBA-15 nanostructured silica as a carbon paste electrode modifier: determination of cadmium ions by differential anodic pulse stripping voltammetry. Journal of the Brazilian Chemical Society, 2007, 18, 810-817.	0.6	23
69	Functionalisation and Characterization of SBA-15 Nanostructured Silica Modified with 2-Benzothiazolethiol. Materials Science Forum, 0, 587-588, 458-462.	0.3	4
70	Preparation and Characterization of Amorphous Silica Organofunctionalised with 2-Mercaptobenzimidazole. Materials Science Forum, 0, 636-637, 793-797.	0.3	1
71	Principal Component Analysis as a Tool for Electrochemical Characterization of Modified Electrodes: A Case Study. Journal of the Electrochemical Society, 0, , .	1.3	1