Andrew D Parsekian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/34945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lake and drained lake basin systems in lowland permafrost regions. Nature Reviews Earth & Environment, 2022, 3, 85-98.	12.2	41
2	Spatial snowdrift modelling for an open natural terrain using a physicallyâ€based linear particle distribution equation. Hydrological Processes, 2022, 36, .	1.1	3
3	A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry. Cryosphere, 2022, 16, 1247-1264.	1.5	5
4	Hydrogeophysical Inversion of Time‣apse ERT Data to Determine Hillslope Subsurface Hydraulic Properties. Water Resources Research, 2022, 58, .	1.7	7
5	Geostatistical Rock Physics Inversion for Predicting the Spatial Distribution of Porosity and Saturation in the Critical Zone. Mathematical Geosciences, 2022, 54, 1315-1345.	1.4	3
6	Geophysical Observations of Taliks Below Drained Lake Basins on the Arctic Coastal Plain of Alaska. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020889.	1.4	9
7	Active layer thickness as a function of soil water content. Environmental Research Letters, 2021, 16, 055028.	2.2	35
8	Influence of permafrost thaw on an extreme geologic methane seep. Permafrost and Periglacial Processes, 2021, 32, 484-502.	1.5	8
9	Remote Sensing-Based Statistical Approach for Defining Drained Lake Basins in a Continuous Permafrost Region, North Slope of Alaska. Remote Sensing, 2021, 13, 2539.	1.8	8
10	Hydrogeophysical comparison of hillslope critical zone architecture for different geologic substrates. Geophysics, 2021, 86, WB87-WB107.	1.4	5
11	Validation of Permafrost Active Layer Estimates from Airborne SAR Observations. Remote Sensing, 2021, 13, 2876.	1.8	9
12	Permafrost Dynamics Observatory—Part I: Postprocessing and Calibration Methods of UAVSAR Lâ€Band InSAR Data for Seasonal Subsidence Estimation. Earth and Space Science, 2021, 8, e2020EA001630.	1.1	11
13	Hydrogeophysics — Introduction. Geophysics, 2021, 86, WBi-WBii.	1.4	0
14	Permafrost Dynamics Observatory: Retrieval of Active Layer Thickness and Soil Moisture from Airborne Insar and Polsar Data. , 2021, , .		0
15	Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafrost and Periglacial Processes, 2020, 31, 110-127.	1.5	30
16	Field scale quantification indicates potential for variability in return flows from flood irrigation in the high altitude western US. Agricultural Water Management, 2020, 232, 106062.	2.4	4
17	Parameterization of a hydrologic model with geophysical data to simulate observed subsurface return flow paths. Vadose Zone Journal, 2020, 19, e20024.	1.3	11
18	Joint Retrieval of Soil Moisture and Permafrost Active Layer Thickness Using L-Band Insar and P-Band		1

Polsar. , 2020, , .

ANDREW D PARSEKIAN

#	Article	IF	CITATIONS
19	Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming. Ground Water, 2019, 57, 303-319.	0.7	29
20	Plant Hydraulic Stress Explained Tree Mortality and Tree Size Explained Beetle Attack in a Mixed Conifer Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3555-3568.	1.3	16
21	Characterizing the Critical Zone Using Borehole and Surface Nuclear Magnetic Resonance. Vadose Zone Journal, 2019, 18, 1-18.	1.3	19
22	Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm. Environmental Research Letters, 2019, 14, 035007.	2.2	64
23	Observing Heterogeneous Unsaturated Flow at the Hillslope Scale Using Time‣apse Electrical Resistivity Tomography. Vadose Zone Journal, 2019, 18, 1-16.	1.3	24
24	Uniform and lateral preferential flows under flood irrigation at field scale. Hydrological Processes, 2019, 33, 2131-2147.	1.1	12
25	Surface nuclear magnetic resonance observations of permafrost thaw below floating, bedfast, and transitional ice lakes. Geophysics, 2019, 84, EN33-EN45.	1.4	13
26	Estimating winter ebullition bubble volume in lake ice using ground-penetrating radar. Geophysics, 2018, 83, H13-H25.	1.4	4
27	Contrasting lake ice responses to winter climate indicate future variability and trends on the Alaskan Arctic Coastal Plain. Environmental Research Letters, 2018, 13, 125001.	2.2	11
28	Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes. Journal of Geophysical Research: Solid Earth, 2018, 123, 9310-9323.	1.4	21
29	Estimating the water holding capacity of the critical zone using nearâ€surface geophysics. Hydrological Processes, 2018, 32, 3308-3326.	1.1	59
30	Why Are Some Rocky Mountain Lakes Ephemeral?. Water Resources Research, 2018, 54, 5245-5263.	1.7	13
31	Geophysical Measurements to Determine the Hydrologic Partitioning of Snowmelt on a Snowâ€Dominated Subalpine Hillslope. Water Resources Research, 2018, 54, 3788-3808.	1.7	32
32	Inverse Methods to Improve Accuracy of Water Content Estimates from Multi-offset GPR. Journal of Environmental and Engineering Geophysics, 2018, 23, 349-361.	1.0	11
33	Symmetry based frequency domain processing to remove harmonic noise from surface nuclear magnetic resonance measurements. Geophysical Journal International, 2017, 208, 724-736.	1.0	8
34	Comparing Measurement Response and Inverted Results of Electrical Resistivity Tomography Instruments. Journal of Environmental and Engineering Geophysics, 2017, 22, 249-266.	1.0	27
35	Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geoscience Data Journal, 2017, 4, 72-79.	1.8	14
36	Presence of rapidly degrading permafrost plateaus in south-central Alaska. Cryosphere, 2016, 10, 2673-2692.	1.5	34

ANDREW D PARSEKIAN

#	Article	IF	CITATIONS
37	Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge. Ground Water, 2016, 54, 818-829.	0.7	20
38	Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophysical Research Letters, 2016, 43, 6358-6365.	1.5	68
39	<scp>NMR</scp> Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers. Ground Water, 2016, 54, 104-114.	0.7	49
40	Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. Geophysics, 2016, 81, H9-H19.	1.4	14
41	Advancements in the measurement of the cryosphere using geophysics — Introduction. Geophysics, 2016, 81, WAi-WAii.	1.4	2
42	Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. Geophysics, 2016, 81, H1-H11.	1.4	3
43	Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar. Remote Sensing, 2015, 7, 3735-3759.	1.8	59
44	Hydrogeophysics for Informed Water Management Decisions in the Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia. ASEG Extended Abstracts, 2015, 2015, 1-3.	0.1	2
45	Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics. Journal of Applied Geophysics, 2015, 119, 61-70.	0.9	21
46	Bootstrap Calibration and Uncertainty Estimation of Downhole <scp>NMR</scp> Hydraulic Conductivity Estimates in an Unconsolidated Aquifer. Ground Water, 2015, 53, 111-121.	0.7	19
47	Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 2015, 53, 1-26.	9.0	192
48	Surface NMR to Image Aquifer Properties in a Magnetic Subsurface. ASEG Extended Abstracts, 2015, 2015, 1-5.	0.1	0
49	Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere, 2014, 8, 815-826.	1.5	50
50	Near-surface geophysics for informed water-management decisions in the Aṉangu Pitjantjatjara Yankunytjatjara (APY) lands of South Australia. The Leading Edge, 2014, 33, 1342-1347.	0.4	2
51	The effect of peat structure on the spatial distribution of biogenic gases within bogs. Hydrological Processes, 2014, 28, 5483-5494.	1.1	29
52	Geophysical and Hydrochemical Identification of Flow Paths with Implications for Water Quality at an <scp>ARR</scp> Site. Ground Water Monitoring and Remediation, 2014, 34, 105-116.	0.6	19
53	Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance. Geophysical Research Letters, 2013, 40, 535-540.	1.5	45
54	Quantifying landscape morphology influence on peatland lateral expansion using groundâ€penetrating radar (GPR) and peat core analysis. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 373-384.	1.3	39

ANDREW D PARSEKIAN

#	Article	IF	CITATIONS
55	The state of the science and vision of the future: Report from the Hydrogeophysics Workshop. The Leading Edge, 2013, 32, 814-818.	0.4	1
56	Calibrating surface NMR hydraulic conductivity estimates using logging NMR and direct hydraulic conductivity measurements. , 2013, , .		0
57	Uncertainty in Peat Volume and Soil Carbon Estimated Using Groundâ€Penetrating Radar and Probing. Soil Science Society of America Journal, 2012, 76, 1911-1918.	1.2	63
58	Application of groundâ€penetrating radar to measure nearâ€saturation soil water content in peat soils. Water Resources Research, 2012, 48, .	1.7	26
59	Small Root Biomass Effect on the Dielectric Properties of Soil. Vadose Zone Journal, 2012, 11, .	1.3	5
60	Geophysical evidence for the lateral distribution of free phase gas at the peat basin scale in a large northern peatland. Journal of Geophysical Research, 2011, 116, .	3.3	21
61	Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA. Earth Surface Processes and Landforms, 2011, 36, 1889-1897.	1.2	21
62	Variations in freeâ€phase gases in peat landforms determined by groundâ€penetrating radar. Journal of Geophysical Research, 2010, 115, .	3.3	28