Teclegiorgis Gebremariam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494236/publications.pdf

Version: 2024-02-01

42 papers 1,985 citations

218677 26 h-index 39 g-index

46 all docs

46 docs citations

46 times ranked

1613 citing authors

#	Article	IF	CITATIONS
1	A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Current Biology, 2022, 32, 1115-1130.e6.	3.9	22
2	Evaluation of Sex Differences in Murine Diabetic Ketoacidosis and Neutropenic Models of Invasive Mucormycosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 313.	3.5	6
3	Combination treatment of liposomal amphotericin B and isavuconazole is synergistic in treating experimental mucormycosis. Journal of Antimicrobial Chemotherapy, 2021, 76, 2636-2639.	3.0	22
4	Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nature Microbiology, 2021, 6, 313-326.	13.3	53
5	119. A Humanized Antibody Targeting the CotH Invasins is Protective Against Murine Mucormycosis. Open Forum Infectious Diseases, 2021, 8, S71-S72.	0.9	1
6	Fosmanogepix (APX001) Is Effective in the Treatment of Immunocompromised Mice Infected with Invasive Pulmonary Scedosporiosis or Disseminated Fusariosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	55
7	Fosmanogepix (APX001) Is Effective in the Treatment of Pulmonary Murine Mucormycosis Due to Rhizopus arrhizus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	54
8	Preserving Vascular Integrity Protects Mice against Multidrug-Resistant Gram-Negative Bacterial Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
9	GRP78 and Integrins Play Different Roles in Host Cell Invasion during Mucormycosis. MBio, 2020, $11, \ldots$	4.1	69
10	Monoclonal IgM Antibodies Targeting Candida albicans Hyr1 Provide Cross-Kingdom Protection Against Gram-Negative Bacteria. Frontiers in Immunology, 2020, 11, 76.	4.8	11
11	Selective inhibition of <i>Rhizopus</i> eumelanin biosynthesis by novel natural product scaffold-based designs caused significant inhibition of fungal pathogenesis. Biochemical Journal, 2020, 477, 2489-2507.	3.7	13
12	745. Combination Treatment of Liposomal Amphotericin B and Isavuconazole is Synergistic in Treating Experimental Mucormycosis. Open Forum Infectious Diseases, 2020, 7, S420-S420.	0.9	0
13	Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Science Advances, 2019, 5, eaaw1327.	10.3	57
14	Galactomannan Is a Biomarker of Fosmanogepix (APX001) Efficacy in Treating Experimental Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	7
15	APX001 Is Effective in the Treatment of Murine Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	38
16	969. GRP78 and Integrin $\hat{I}^2 I/\hat{I} \pm 3$ Play Disparate Roles in Epithelium Invasion During Mucormycosis. Open Forum Infectious Diseases, 2018, 5, S37-S37.	0.9	0
17	2393. Evaluation of Antifungal Treatment in a Neutropenic Mouse Model of Scedosporiosis. Open Forum Infectious Diseases, 2018, 5, S713-S714.	0.9	0
18	PCR-Based Approach Targeting Mucorales-Specific Gene Family for Diagnosis of Mucormycosis. Journal of Clinical Microbiology, 2018, 56, .	3.9	77

#	Article	IF	CITATIONS
19	Inhibition of EGFR Signaling Protects from Mucormycosis. MBio, 2018, 9, .	4.1	45
20	Prophylaxis with Isavuconazole or Posaconazole Protects Immunosuppressed Mice from Pulmonary Mucormycosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
21	Prophylactic Treatment with VT-1161 Protects Immunosuppressed Mice from Rhizopus arrhizus var. arrhizus Infection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31
22	Monotherapy or combination therapy of isavuconazole and micafungin for treating murine mucormycosis. Journal of Antimicrobial Chemotherapy, 2017, 72, 462-466.	3.0	37
23	PCR-based Diagnosis of Mucormycosis Targeting Mucorales-specific Genes. Open Forum Infectious Diseases, 2017, 4, S612-S612.	0.9	3
24	APX001A Protects Immunosuppressed Mice from Rhizopus delemar Infection. Open Forum Infectious Diseases, 2017, 4, S475-S475.	0.9	10
25	An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nature Communications, 2016, 7, 12218.	12.8	103
26	Statin Concentrations Below the Minimum Inhibitory Concentration Attenuate the Virulence of <i>Rhizopus oryzae </i> . Journal of Infectious Diseases, 2016, 214, 114-121.	4.0	30
27	Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis. Journal of Clinical Investigation, 2016, 126, 2280-2294.	8.2	84
28	Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine. PLoS Pathogens, 2015, 11, e1004842.	4.7	47
29	VT-1161 Protects Immunosuppressed Mice from Rhizopus arrhizus var. arrhizus Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 7815-7817.	3.2	44
30	Isavuconazole Therapy Protects Immunosuppressed Mice from Mucormycosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 2450-2453.	3.2	64
31	Heat-killed yeast protects diabetic ketoacidotic-steroid treated mice from pulmonary mucormycosis. Vaccine, 2014, 32, 3573-3576.	3.8	14
32	CotH3 mediates fungal invasion of host cells during mucormycosis. Journal of Clinical Investigation, 2014, 124, 237-250.	8.2	185
33	NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine, 2013, 31, 5549-5556.	3.8	79
34	Efficacy of Liposomal Amphotericin B and Posaconazole in Intratracheal Models of Murine Mucormycosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 3340-3347.	3.2	54
35	Diabetic murine models for Acinetobacter baumannii infection. Journal of Antimicrobial Chemotherapy, 2012, 67, 1439-1445.	3.0	33
36	Combination Therapy of Murine Mucormycosis or Aspergillosis with Iron Chelation, Polyenes, and Echinocandins. Antimicrobial Agents and Chemotherapy, 2011, 55, 1768-1770.	3.2	54

#	Article	IF	CITATIONS
37	The high affinity iron permease is a key virulence factor required for <i>Rhizopus oryzae </i> pathogenesis. Molecular Microbiology, 2010, 77, 587-604.	2.5	135
38	The iron chelator deferasirox enhances liposomal amphotericin B efficacy in treating murine invasive pulmonary aspergillosis. Journal of Antimicrobial Chemotherapy, 2010, 65, 289-292.	3.0	56
39	Posaconazole Mono- or Combination Therapy for Treatment of Murine Zygomycosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 772-775.	3.2	89
40	Combination Echinocandin-Polyene Treatment of Murine Mucormycosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 1556-1558.	3.2	159
41	Comparison of Lipid Amphotericin B Preparations in Treating Murine Zygomycosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 1573-1576.	3.2	52
42	Bacterial Endosymbiosis Is Widely Present among Zygomycetes but Does Not Contribute to the Pathogenesis of Mucormycosis. Journal of Infectious Diseases, 2008, 198, 1083-1090.	4.0	64