Zhe Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494065/publications.pdf

Version: 2024-02-01

361413 315739 1,867 44 20 38 citations h-index g-index papers 45 45 45 2239 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovascular Research, 2023, 118, 3386-3400.	3.8	10
2	Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism: Clinical and Experimental, 2022, 130, 155165.	3.4	7
3	Mechanisms underlying vascular stiffening in obesity, insulin resistance, and type 2 diabetes. , 2021, , 63-88.		0
4	Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism: Clinical and Experimental, 2021, 119, 154766.	3.4	231
5	Measurement of Pulse Propagation Velocity, Distensibility and Strain in an Abdominal Aortic Aneurysm Mouse Model. Journal of Visualized Experiments, 2020, , .	0.3	6
6	Endothelial sodium channel activation promotes cardiac stiffness and diastolic dysfunction in Western diet fed female mice. Metabolism: Clinical and Experimental, 2020, 109, 154223.	3.4	13
7	A Calcium Mediated Mechanism Coordinating Vascular Smooth Muscle Cell Adhesion During KCl Activation. Frontiers in Physiology, 2018, 9, 1810.	2.8	17
8	Analysis of the expression of NLRP3 and AIM2 in periapical lesions with apical periodontitis and microbial analysis outside the apical segment of teeth. Archives of Oral Biology, 2017, 78, 39-47.	1.8	47
9	Nâ€Cadherin, a novel and rapidly remodelling site involved in vasoregulation of small cerebral arteries. Journal of Physiology, 2017, 595, 1987-2000.	2.9	10
10	Fascin2 regulates cisplatin-induced apoptosis in NRK-52E cells. Toxicology Letters, 2017, 266, 56-64.	0.8	4
11	Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice. Metabolism: Clinical and Experimental, 2017, 74, 32-40.	3.4	49
12	Comparison of Effects of Different Statins on Contrast-Induced Acute Kidney Injury in Rats: Histopathological and Biochemical Findings. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	4.0	23
13	Extracellular Matrix Disarray as a Mechanism for Greater Abdominal Versus Thoracic Aortic Stiffness With Aging in Primates. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 700-706.	2.4	45
14	Circulating MicroRNAâ€188, â€30a, and â€30e as Early Biomarkers for Contrastâ€Induced Acute Kidney Injury. Journal of the American Heart Association, 2016, 5, .	3.7	53
15	Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. Journal of Physiology, 2016, 594, 7027-7047.	2.9	49
16	Xuezhikang ameliorates contrast media-induced nephropathy in rats via suppression of oxidative stress, inflammatory responses and apoptosis. Renal Failure, 2016, 38, 1717-1725.	2.1	12
17	Orphan Nuclear Receptor Nur77 Inhibits Angiotensin Il–Induced Vascular Remodeling via Downregulation of β-Catenin. Hypertension, 2016, 67, 153-162.	2.7	51
18	The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice. International Journal of Molecular Medicine, 2015, 36, 1547-1555.	4.0	16

#	Article	IF	Citations
19	Transcriptome analysis of Enterococcus faecalis in response to alkaline stress. Frontiers in Microbiology, 2015, 6, 795.	3.5	48
20	Vascular Smooth Muscle Cell Stiffness and Adhesion to Collagen I Modified by Vasoactive Agonists. PLoS ONE, 2015, 10, e0119533.	2.5	39
21	Augmented Vascular Smooth Muscle Cell Stiffness and Adhesion When Hypertension Is Superimposed on Aging. Hypertension, 2015, 65, 370-377.	2.7	109
22	MiR-145 suppressed human retinoblastoma cell proliferation and invasion by targeting ADAM19. International Journal of Clinical and Experimental Pathology, 2015, 8, 14521-7.	0.5	19
23	Abstract 246: Thoracic versus Abdominal Aortic Stiffness in Young and Old Non-Human Primates. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
24	Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction. Frontiers in Physiology, 2014, 5, 413.	2.8	18
25	Nâ€eadherin, A Vascular Smooth Muscle Cell–Cell Adhesion Molecule: Function and Signaling for Vasomotor Control. Microcirculation, 2014, 21, 208-218.	1.8	33
26	Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion. Journal of Physiology, 2014, 592, 1249-1266.	2.9	50
27	PDMS elastic micropost arrays for studying vascular smooth muscle cells. Sensors and Actuators B: Chemical, 2013, 188, 1055-1063.	7.8	24
28	Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1281-H1287.	3.2	142
29	Influence of membrane cholesterol and substrate elasticity on endothelial cell spreading behavior. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1994-2004.	4.0	8
30	Amyloid-Î ² Peptide on Sialyl-LewisX-Selectin-Mediated Membrane Tether Mechanics at the Cerebral Endothelial Cell Surface. PLoS ONE, 2013, 8, e60972.	2.5	10
31	Isolated Vascular Smooth Muscle Stiffness as a Common Mechanism to the Increased Aortic Stiffness of Aging and Hypertension. FASEB Journal, 2013, 27, lb687.	0.5	0
32	Calcium and its role in vascular smooth muscle cell cortical elasticity and adhesion. FASEB Journal, 2013, 27, lb700.	0.5	0
33	Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovascular Research, 2012, 96, 73-80.	3.8	60
34	Mechanotransduction through fibronectin-integrin focal adhesion in microvascular smooth muscle cells: is calcium essential?. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1965-H1973.	3.2	22
35	Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell, 2012, 11, 741-750.	6.7	74
36	Zyxin is involved in regulation of mechanotransduction in arteriole smooth muscle cells. Frontiers in Physiology, 2012, 3, 472.	2.8	19

#	Article	IF	CITATIONS
37	Peritoneal Mechanobiology and Metastatic Success in Epithelial Ovarian Cancer. FASEB Journal, 2012, 26, 656.11.	0.5	О
38	Atomic Force Microscope-Enabled Studies of Integrin–Extracellular Matrix Interactions in Vascular Smooth Muscle and Endothelial Cells. Methods in Molecular Biology, 2011, 736, 411-424.	0.9	3
39	Modulation of Microvascular Smooth Muscle Adhesion and Mechanotransduction by Integrin-Linked Kinase. Microcirculation, 2010, 17, 113-127.	1.8	10
40	N-Cadherin and Integrin Blockade Inhibit Arteriolar Myogenic Reactivity but not Pressure-Induced Increases in Intracellular Ca2+. Frontiers in Physiology, 2010, 1, 165.	2.8	20
41	Short Communication: Vascular Smooth Muscle Cell Stiffness As a Mechanism for Increased Aortic Stiffness With Aging. Circulation Research, 2010, 107, 615-619.	4.5	275
42	Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. American Journal of Physiology - Cell Physiology, 2008, 295, C268-C278.	4.6	107
43	Mechanical properties of the interaction between fibronectin and $\hat{l}\pm 5\hat{l}^21$ -integrin on vascular smooth muscle cells studied using atomic force microscopy. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2526-H2535.	3.2	132
44	Modification of Fibronectin by Non-Enzymatic Glycation Impairs K+ Channel Function in Rat Cerebral Artery Smooth Muscle Cells. Frontiers in Physiology, 0, 13, .	2.8	2