
Hubert Kuszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental investigation of the autoignition properties of ethanol–biodiesel fuel blends. Fuel, 2019, 235, 1301-1308.	6.4	54
2	Use of the constant volume combustion chamber to examine the properties of autoignition and derived cetane number of mixtures of diesel fuel and ethanol. Fuel, 2017, 200, 564-575.	6.4	41
3	â€~Experimental investigation of the effect of ambient gas temperature on the autoignition properties of ethanol–diesel fuel blends'. Fuel, 2018, 214, 26-38.	6.4	34
4	Experimental study of the autoignition properties of n-butanol–diesel fuel blends at various ambient gas temperatures. Fuel, 2019, 235, 1316-1326.	6.4	31
5	Lubricity of ethanol–diesel blends – Study with the HFRR method. Fuel, 2017, 208, 491-498.	6.4	30
6	The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques. Energies, 2022, 15, 142.	3.1	30
7	Effect of adding 2-ethylhexyl nitrate cetane improver on the autoignition properties of ethanol–diesel fuel blend – Investigation at various ambient gas temperatures. Fuel, 2018, 224, 57-67.	6.4	28
8	Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions. Environmental Science and Pollution Research, 2018, 25, 17862-17877.	5.3	27
9	Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool. Energies, 2021, 14, 4399.	3.1	23
10	Physical and Chemical Properties of 1-Butanol–Diesel Fuel Blends. Energy & Fuels, 2018, 32, 11619-11631.	5.1	18
11	Influence of Rapeseed Oil Ester Additives on Fuel Quality Index for Air Jet Engines. Chemistry and Technology of Fuels and Oils, 2017, 53, 308-317.	0.5	15
12	Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures. , 0, , .		13
13	Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies, 2022, 15, 2238.	3.1	13
14	Effect of temperature on tribological properties of 1-butanol–diesel fuel blends – Preliminary experimental study using the HFRR method. Fuel, 2021, 296, 120700.	6.4	12
15	Effect of Injection Pressure and Air–Fuel Ratio on the Self-Ignition Properties of 1-Butanol–Diesel Fuel Blends: Study Using a Constant-Volume Combustion Chamber. Energy & Fuels, 2019, 33, 2335-2347.	5.1	10
16	Physical-Chemical Properties of Jet Fuel Blends with Components Derived from Rape Oil. Chemistry and Chemical Technology, 2016, 10, 485-492.	1.1	10
17	Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle. Energies, 2022, 15, 122.	3.1	10
18	Design of Affordable Multi-Cylinder Variable Compression Ratio (VCR) Engine for Advanced		9

```
Combustion Research Purposes. , 0, , .
```

HUBERT KUSZEWSKI

#	Article	IF	CITATIONS
19	The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled with Petrol and LPG. , 0, , .		9
20	Antiwear Properties of Plant—Mineral-Based Fuels for Airbreathing Jet Engines. Chemistry and Technology of Fuels and Oils, 2017, 53, 1-9.	0.5	7
21	Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method. Materials, 2021, 14, 2492.	2.9	6
22	Experimental investigations of a new type of fuelling system for heavy-duty diesel engines. International Journal of Heavy Vehicle Systems, 2009, 16, 61.	0.2	4
23	IMPROVEMENT OF TECHNOLOGICAL SCHEME OF FATTY ACIDS ETHYL ESTERS PRODUCTION FOR USE AS JET FUELS BIOCOMPONENTS. Theoretical & Applied Science, 2014, 19, 44-50.	0.0	4
24	An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions. IOP Conference Series: Materials Science and Engineering, 2016, 148, 012059.	0.6	3
25	The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase. , O, , .		2
26	Experimental study on antiwear properties for blends of jet fuel with bio-components derived from rapeseed oil. Eastern-European Journal of Enterprise Technologies, 2015, 5, 20.	0.5	2
27	The study on injection parameters of selected alternative fuels used in diesel engines. IOP Conference Series: Materials Science and Engineering, 2016, 148, 012070.	0.6	1
28	EXPERIMENTAL STUDY ON ANTIWEAR PROPERTIES FOR BLENDS OF JET FUEL WITH BIO-COMPONENTS DERIVED FROM RAPESEED OIL. Transactions of the Institute of Aviation, 2016, 245, 352-365.	0.7	1
29	Experimental Study of Spray Generated by a New Type of Injector with Rotary Swinging Needle. , 2010, , .		0
30	Development of alternative jet fuels modified with camelina oil bio-additives. , 2019, , 112-125.		0
31	Anti-wear Properties of Jet Fuel with Camelina Oils Bio-Additives. Lecture Notes in Intelligent Transportation and Infrastructure, 2020, , 601-609.	0.5	0