Francesco Saverio Di Leva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3493743/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. Journal of Medicinal Chemistry, 2022, 65, 2716-2746.	2.9	149
2	The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins. Biomaterials, 2021, 271, 120754.	5.7	14
3	Halting the Spread of Herpes Simplex Virus-1: The Discovery of an Effective Dual αvβ6/αvβ8 Integrin Ligand. Journal of Medicinal Chemistry, 2021, 64, 6972-6984.	2.9	9
4	Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors. Antiviral Research, 2020, 174, 104671.	1.9	14
5	Clickâ€Chemistry (CuAAC) Trimerization of an α _v β ₆ Integrin Targeting Gaâ€68â€Peptide: Enhanced Contrast for inâ€Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. ChemBioChem, 2020, 21, 2836-2843.	1.3	20
6	GPBAR1 Activation by C6-Substituted Hyodeoxycholane Analogues Protect against Colitis. ACS Medicinal Chemistry Letters, 2020, 11, 818-824.	1.3	8
7	Disulfide Bond Replacement with 1,4―and 1,5â€Disubstituted [1,2,3]â€Triazole on Câ€Xâ€C Chemokine Recep Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry - A European Journal, 2020, 26, 10113-10125.	otor 1.7	10
8	Bioinformatics and Biosimulations as Toolbox for Peptides and Peptidomimetics Design: Where Are We?. Frontiers in Molecular Biosciences, 2020, 7, 66.	1.6	34
9	Targeting the KRAS oncogene: Synthesis, physicochemical and biological evaluation of novel G-Quadruplex DNA binders. European Journal of Pharmaceutical Sciences, 2020, 149, 105337.	1.9	15
10	Structural Insight into the Binding Mode of FXR and GPBAR1 Modulators. Handbook of Experimental Pharmacology, 2019, 256, 111-136.	0.9	8
11	Introduction of Nonacidic Side Chains on 6-Ethylcholane Scaffolds in the Identification of Potent Bile Acid Receptor Agonists with Improved Pharmacokinetic Properties. Molecules, 2019, 24, 1043.	1.7	3
12	Discovery of ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl)ureidyl derivatives as selective non-steroidal agonists of the G-protein coupled bile acid receptor-1. Scientific Reports, 2019, 9, 2504.	1.6	13
13	Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. Journal of Medicinal Chemistry, 2019, 62, 2024-2037.	2.9	33
14	Investigation around the Oxadiazole Core in the Discovery of a New Chemotype of Potent and Selective FXR Antagonists. ACS Medicinal Chemistry Letters, 2019, 10, 504-510.	1.3	27
15	Novel Isoxazole Derivatives with Potent FXR Agonistic Activity Prevent Acetaminophen-Induced Liver Injury. ACS Medicinal Chemistry Letters, 2019, 10, 407-412.	1.3	27
16	Ligand-Based NMR Study of C-X-C Chemokine Receptor Type 4 (CXCR4)–Ligand Interactions on Living Cancer Cells. Journal of Medicinal Chemistry, 2018, 61, 2910-2923.	2.9	22
17	<i>N</i> -Methylation of <i>iso</i> DGR Peptides: Discovery of a Selective α5β1-Integrin Ligand as a Potent Tumor Imaging Agent. Journal of Medicinal Chemistry, 2018, 61, 2490-2499.	2.9	18
18	From a Helix to a Small Cycle: Metadynamicsâ€inspired αvβ6 Integrin Selective Ligands. Angewandte Chemie - International Edition, 2018, 57, 14645-14649.	7.2	26

#	Article	IF	CITATIONS
19	Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. Journal of Medicinal Chemistry, 2018, 61, 4791-4809.	2.9	22
20	Von einer Helix zu einem kleinen Ring: Metadynamikâ€inspirierte, selektive Liganden für αvβ6â€Integrin. Angewandte Chemie, 2018, 130, 14856-14860.	1.6	3
21	Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists. Scientific Reports, 2017, 7, 43290.	1.6	30
22	Lead Discovery of Dual G-Quadruplex Stabilizers and Poly(ADP-ribose) Polymerases (PARPs) Inhibitors: A New Avenue in Anticancer Treatment. Journal of Medicinal Chemistry, 2017, 60, 3626-3635.	2.9	24
23	Overcoming the Lack of Oral Availability of Cyclic Hexapeptides: Design of a Selective and Orally Available Ligand for the Integrin αvl²3. Angewandte Chemie - International Edition, 2017, 56, 16405-16409.	7.2	30
24	Lösung des Problems mangelnder oraler Verfügbarkeit cyclischer Hexapeptide: Entwicklung eines selektiven, oral verfügbaren Liganden für das Integrin αvβ3. Angewandte Chemie, 2017, 129, 16624-166	529.	5
25	Epoxide functionalization on cholane side chains in the identification of G-protein coupled bile acid receptor (GPBAR1) selective agonists. RSC Advances, 2017, 7, 32877-32885.	1.7	4
26	Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonist. Journal of Medicinal Chemistry, 2017, 60, 9641-9652.	2.9	21
27	Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Frontiers in Pharmacology, 2017, 8, 162.	1.6	23
28	Stabile Peptide statt "gestapelte Peptide― hochaffine αvβ6â€selektive Integrinliganden. Angewandte Chemi 2016, 128, 1559-1563.	ie, 1.6	11
29	Exploring the N-Terminal Region of C-X-C Motif Chemokine 12 (CXCL12): Identification of Plasma-Stable Cyclic Peptides As Novel, Potent C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonists. Journal of Medicinal Chemistry, 2016, 59, 8369-8380.	2.9	26
30	New insights into the interaction between pyrrolyl diketoacids and HIV-1 integrase active site and comparison with RNase H. Antiviral Research, 2016, 134, 236-243.	1.9	35
31	Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6â€ S elective Integrin Ligands. Angewandte Chemie - International Edition, 2016, 55, 1535-1539.	7.2	59
32	Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma. Journal of Medicinal Chemistry, 2016, 59, 5857-5867.	2.9	54
33	The ring residue proline 8 is crucial for the thermal stability of the lasso peptide caulosegnin II. Molecular BioSystems, 2016, 12, 1106-1109.	2.9	35
34	Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism. Scientific Reports, 2015, 5, 16605.	1.6	23
35	Discovery of N-aryl-naphthylamines as inÂvitro inhibitors of the interaction between HIV integrase and the cofactor LEDGF/p75. European Journal of Medicinal Chemistry, 2015, 101, 288-294.	2.6	16
36	<i>N</i> -Substituted Quinolinonyl Diketo Acid Derivatives as HIV Integrase Strand Transfer Inhibitors and Their Activity against RNase H Function of Reverse Transcriptase. Journal of Medicinal Chemistry, 2015, 58, 4610-4623.	2.9	38

#	Article	IF	CITATIONS
37	Identification of Highly Conserved Residues Involved in Inhibition of HIV-1 RNase H Function by Diketo Acid Derivatives. Antimicrobial Agents and Chemotherapy, 2014, 58, 6101-6110.	1.4	64
38	Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Research, 2014, 42, 5447-5455.	6.5	79
39	Basic Quinolinonyl Diketo Acid Derivatives as Inhibitors of HIV Integrase and their Activity against RNase H Function of Reverse Transcriptase. Journal of Medicinal Chemistry, 2014, 57, 3223-3234.	2.9	51
40	Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives As Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1). Journal of Medicinal Chemistry, 2014, 57, 7687-7701.	2.9	62
41	Pharmacophoric Modifications Lead to Superpotent αvβ3 Integrin Ligands with Suppressed α5β1 Activity. Journal of Medicinal Chemistry, 2014, 57, 3410-3417.	2.9	35
42	Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile Acid Receptors. Journal of Medicinal Chemistry, 2014, 57, 937-954.	2.9	79
43	Rational Improvement of the Affinity and Selectivity of Integrin Binding of Grafted Lasso Peptides. Journal of Medicinal Chemistry, 2014, 57, 5829-5834.	2.9	68
44	Marine and Semi-Synthetic Hydroxysteroids as New Scaffolds for Pregnane X Receptor Modulation. Marine Drugs, 2014, 12, 3091-3115.	2.2	13
45	Phenylpyrazolo[1,5- <i>a</i>]quinazolin-5(4 <i>H</i>)-one: A Suitable Scaffold for the Development of Noncamptothecin Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7458-7462.	2.9	43
46	Binding Mechanism of the Farnesoid X Receptor Marine Antagonist Suvanine Reveals a Strategy To Forestall Drug Modulation on Nuclear Receptors. Design, Synthesis, and Biological Evaluation of Novel Ligands. Journal of Medicinal Chemistry, 2013, 56, 4701-4717.	2.9	49
47	Exploring the Chemical Space of G-Quadruplex Binders: Discovery of a Novel Chemotype Targeting the Human Telomeric Sequence. Journal of Medicinal Chemistry, 2013, 56, 9646-9654.	2.9	48
48	Biselectivity of isoDGR Peptides for Fibronectin Binding Integrin Subtypes α5β1 and αvβ6: Conformational Control through Flanking Amino Acids. Journal of Medicinal Chemistry, 2013, 56, 1509-1519.	2.9	67
49	State-of-the-Art Methodologies for the Discovery and Characterization of DNA G-Quadruplex Binders. Current Pharmaceutical Design, 2012, 18, 1880-1899.	0.9	40
50	Protein Flexibility in Virtual Screening: The BACE-1 Case Study. Journal of Chemical Information and Modeling, 2012, 52, 2697-2704.	2.5	47
51	Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: A first round of lead optimization. European Journal of Medicinal Chemistry, 2012, 47, 143-152.	2.6	25