

Mulatu Geleta Dida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3493290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Frontiers in Plant Science, 2017, 8, 1277.	1.7	178
2	Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta, 2022, 255, 20.	1.6	55
3	Establishing genomic tools and resources for <i>Guizotia abyssinica</i> (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Molecular Ecology Resources, 2010, 10, 1048-1058.	2.2	52
4	Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS ONE, 2021, 16, e0258211.	1.1	43
5	Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas, 2011, 148, 52-62.	0.5	42
6	Crossbreeding East African Highland Bananas: Lessons Learnt Relevant to the Botany of the Crop After 21 Years of Genetic Enhancement. Frontiers in Plant Science, 2019, 10, 81.	1.7	40
7	Oil crops for the future. Current Opinion in Plant Biology, 2020, 56, 181-189.	3.5	38
8	A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiologia Plantarum, 2018, 164, 442-451.	2.6	36
9	Screening the primary gene pool of field pea (Pisum sativum L. subsp. sativum) in Ethiopia for resistance against pea weevil (Bruchus pisorum L.). Genetic Resources and Crop Evolution, 2015, 62, 525-538.	0.8	33
10	Marker-aided breeding for resistance to bean common mosaic virus in Kyrgyz bean cultivars. Euphytica, 2013, 193, 67-78.	0.6	32
11	Comparative analysis of genetic diversity of sesame (Sesamum indicum L.) from Vietnam and Cambodia using agro-morphological and molecular markers. Hereditas, 2011, 148, 28-35.	0.5	31
12	Variation and inheritance of oil content and fatty acid composition in niger (Guizotia abyssinica). Journal of Food Composition and Analysis, 2011, 24, 995-1003.	1.9	31
13	Genetic Diversity of Arabica Coffee (<i>Coffea arabica</i> L.) in Nicaragua as Estimated by Simple Sequence Repeat Markers. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	30
14	Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa-B. oleracea monosomic alien addition lines. Annals of Botany, 2012, 109, 1227-1242.	1.4	29
15	Introducing hostâ€plant resistance to anthracnose in <scp>K</scp> yrgyz common bean through inoculationâ€based and markerâ€aided selection. Plant Breeding, 2014, 133, 86-91.	1.0	29
16	Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics, 2015, 16, 102.	2.7	26
17	Genetic diversity and population structure analyses of Plectranthus edulis (Vatke) Agnew collections from diverse agro-ecologies in Ethiopia using newly developed EST-SSRs marker system. BMC Genetics, 2018, 19, 92.	2.7	26
18	Genetic diversity of Guizotia abyssinica (L. f.) Cass. (Asteraceae) from Ethiopia as revealed by random amplified polymorphic DNA (RAPD). Genetic Resources and Crop Evolution, 2007, 54, 601-614.	0.8	24

#	Article	IF	CITATIONS
37	Understanding the Sorghum–Colletotrichum sublineola Interactions for Enhanced Host Resistance. Frontiers in Plant Science, 2021, 12, 641969.	1.7	11
38	Insights Into the Genetic Diversity of Nordic Red Clover (Trifolium pratense) Revealed by SeqSNP-Based Genic Markers. Frontiers in Plant Science, 2021, 12, 748750.	1.7	11
39	Phylogenetics and taxonomic delimitation of the genus Guizotia (Asteraceae) based on sequences derived from various chloroplast DNA regions. Plant Systematics and Evolution, 2010, 289, 77-89.	0.3	10
40	Identification of genes regulating traits targeted for domestication of field cress (Lepidium) Tj ETQqO O O rgBT /C	Overlock 1	0 Tf 50 622 T
41	Genetic diversity of avocado from the southern highlands of Tanzania as revealed by microsatellite markers. Hereditas, 2020, 157, 40.	0.5	9
42	Nutritional Profile of the Ethiopian Oilseed Crop Noug (Guizotia abyssinica Cass.): Opportunities for Its Improvement as a Source for Human Nutrition. Foods, 2021, 10, 1778.	1.9	9
43	RNA-Seq Provides Novel Genomic Resources for Noug (Guizotia abyssinica) and Reveals Microsatellite Frequency and Distribution in Its Transcriptome. Frontiers in Plant Science, 2022, 13, .	1.7	9
44	Comparative analysis of genetic relationship and diagnostic markers of several taxa of Guizotia Cass. (Asteraceae) as revealed by AFLPs and RAPDs. Plant Systematics and Evolution, 2007, 265, 221-239.	0.3	8
45	Suitability of existing Musa morphological descriptors to characterize East African highland â€ ⁻ matooke' bananas. Genetic Resources and Crop Evolution, 2018, 65, 645-657.	0.8	8
46	Significant progressive heterobeltiosis in banana crossbreeding. BMC Plant Biology, 2020, 20, 489.	1.6	8
47	Enhancing Neoplasm Expression in Field Pea (Pisum sativum) via Intercropping and Its Significance to Pea Weevil (Bruchus pisorum) Management. Frontiers in Plant Science, 2016, 7, 654.	1.7	7
48	Morphological traits based genetic diversity assessment of Ethiopian potato [Plectranthus edulis (Vatke) Agnew] populations from Ethiopia. Genetic Resources and Crop Evolution, 2020, 67, 809-829.	0.8	7
49	Characterization of Tanzanian Avocado Using Morphological Traits. Diversity, 2020, 12, 64.	0.7	7
50	Comparison of Morphological and Genetic Characteristics of Avocados Grown in Tanzania. Genes, 2021, 12, 63.	1.0	7
51	Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses. Frontiers in Genetics, 2022, 13, 848627.	1.1	7
52	Genetic structure and relationships within and between cultivated and wild korarima [Aframomum corrorima (Braun) P.C.M. Jansen] in Ethiopia as revealed by simple sequence repeat (SSR) markers. BMC Genetics, 2017, 18, 72.	2.7	6
53	Molecular markers associated with aluminium tolerance in Sorghum bicolor. Hereditas, 2018, 155, 20.	0.5	6
54	High-Density Genetic Linkage Mapping of Lepidium Based on Genotyping-by-Sequencing SNPs and Segregating Contig Tag Haplotypes. Frontiers in Plant Science, 2020, 11, 448.	1.7	6

Mulatu Geleta Dida

#	Article	IF	CITATIONS
55	Sterols as a biomarker in tracing niger and sesame seeds oils adulterated with palm oil. Heliyon, 2021, 7, e06797.	1.4	6
56	Analyses of genetic diversity and population structure of anchote (Coccinia abyssinica (Lam.) Cogn.) using newly developed EST-SSR markers. Genetic Resources and Crop Evolution, 2021, 68, 2337-2350.	0.8	5
57	Population Genetic Analysis of <i>Lobelia rhynchopetalum</i> Hemsl. (Campanulaceae) Using DNA Sequences from <i>ITS</i> and Eight Chloroplast DNA Regions. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	4
58	Molecular and Genomic Tools Provide Insights on Crop Domestication and Evolution. Advances in Agronomy, 2016, 135, 181-223.	2.4	4
59	Novel Expressed Sequence Tag-Derived and Other Genomic Simple Sequence Repeat Markers Revealed Genetic Diversity in Ethiopian Finger Millet Landrace Populations and Cultivars. Frontiers in Plant Science, 2021, 12, 735610.	1.7	4
60	Characterization of Oilseed Crop Noug (Guizotia abyssinica) Using Agro-Morphological Traits. Agronomy, 2021, 11, 1479.	1.3	3
61	QTL Mapping for Domestication-Related Characteristics in Field Cress (Lepidium campestre)—A Novel Oil Crop for the Subarctic Region. Genes, 2020, 11, 1223.	1.0	2
62	Traits that define yield and genetic gain in East African highland banana breeding. Euphytica, 2021, 217, 1.	0.6	2
63	Mineral composition and nutritive value of Festuca ecotypes originated from the highland region of Bolivia and cultivars from Argentina. Australian Journal of Crop Science, 2019, , 1650-1658.	0.1	2
64	Heterobeltiosis in Banana and Genetic Gains through Crossbreeding. Proceedings (mdpi), 2019, 36, 193.	0.2	0