Adela GonzÃ;lez-MegÃ-as

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3493199/publications.pdf

Version: 2024-02-01

ADELA CONZÃUEZ-MECÃAS

#	Article	IF	CITATIONS
1	Phenotypic plasticity guides <i>Moricandia arvensis</i> divergence and convergence across the Brassicaceae floral morphospace. New Phytologist, 2022, 233, 1479-1493.	7.3	7
2	Pre-dispersal seed predators boost seed production in a short-lived plant. Oecologia, 2021, 195, 971-982.	2.0	8
3	Killing conspecific adults in mammals. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211080.	2.6	6
4	Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nature Communications, 2020, 11, 4019.	12.8	29
5	Altered rainfall patterns reduce plant fitness and disrupt interactions between below―and aboveground insect herbivores. Ecosphere, 2020, 11, e03127.	2.2	3
6	Effects of Post-Fire Deadwood Management on Soil Macroarthropod Communities. Forests, 2019, 10, 1046.	2.1	7
7	Characterization of microsatellite markers for <i>Moricandia moricandioides</i> (Brassicaceae) and related species. Applications in Plant Sciences, 2018, 6, e01172.	2.1	0
8	Transgenerational effects of ungulates and pre-dispersal seed predators on offspring success and resistance to herbivory. PLoS ONE, 2018, 13, e0207553.	2.5	5
9	Molecular phylogeny and evolutionary history of <i>Moricandia</i> DC (Brassicaceae). PeerJ, 2017, 5, e3964.	2.0	10
10	Premio "Ecosistemas―al mejor resumen de Tesis Doctoral publicado en 2016. Ecosistemas, 2017, 26, 90-90.	0.4	0
11	Within―and transâ€generational effects of herbivores and detritivores on plant performance and reproduction. Journal of Animal Ecology, 2016, 85, 283-290.	2.8	14
12	The phylogenetic roots of human lethal violence. Nature, 2016, 538, 233-237.	27.8	121
13	The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodiversity and Conservation, 2015, 24, 1843-1857.	2.6	73
14	Effects of roads on insects: a review. Biodiversity and Conservation, 2015, 24, 659-682.	2.6	110
15	Climate change and elevational range shifts: evidence from dung beetles in two <scp>E</scp> uropean mountain ranges. Global Ecology and Biogeography, 2014, 23, 646-657.	5.8	106
16	Climate change effects on above- and below-ground interactions in a dryland ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3115-3124.	4.0	33
17	Spatio-temporal change in the relationship between habitat heterogeneity and species diversity. Acta Oecologica, 2011, 37, 179-186.	1.1	20
18	Trophic interactions in an arid ecosystem: From decomposers to top-predators. Journal of Arid Environments, 2011, 75, 1333-1341.	2.4	21

Adela GonzÃilez-MegÃas

#	Article	IF	CITATIONS
19	Root herbivores and detritivores shape aboveâ€ground multitrophic assemblage through plantâ€mediated effects. Journal of Animal Ecology, 2010, 79, 923-931.	2.8	55
20	Different structuring factors but connected dynamics shape litter and belowground soil macrofaunal food webs. Soil Biology and Biochemistry, 2009, 41, 2543-2550.	8.8	20
21	Vertical distribution of soil macrofauna in an arid ecosystem: Are litter and belowground compartmentalized habitats?. Pedobiologia, 2009, 52, 361-373.	1.2	26
22	Different microhabitats affect soil macroinvertebrate assemblages in a Mediterranean arid ecosystem. Applied Soil Ecology, 2009, 41, 329-335.	4.3	60
23	Changes in the composition of British butterfly assemblages over two decades. Global Change Biology, 2008, 14, 1464-1474.	9.5	76
24	Factors determining beetle richness and composition along an altitudinal gradient in the high mountains of the Sierra Nevada National Park (Spain). Ecoscience, 2008, 15, 429-441.	1.4	13
25	Escape from natural enemies during climateâ€driven range expansion: a case study. Ecological Entomology, 2008, 33, 413-421.	2.2	137
26	Trait-mediated indirect interactions, density-mediated indirect interactions, and direct interactions between mammalian and insect herbivores. , 2007, , 104-123.		11
27	DIRECT AND INDIRECT EFFECTS OF CLIMATE AND HABITAT FACTORS ON BUTTERFLY DIVERSITY. Ecology, 2007, 88, 605-611.	3.2	356
28	Long-term effects of ungulates on phytophagous insects. Ecological Entomology, 2007, 32, 070130195410002-???.	2.2	24
29	Diversityâ€habitat heterogeneity relationship at different spatial and temporal scales. Ecography, 2007, 30, 31-41.	4.5	58
30	Soil macroinvertebrate fauna of a Mediterranean arid system: Composition and temporal changes in the assemblage. Soil Biology and Biochemistry, 2007, 39, 1916-1925.	8.8	64
31	Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1465-1470.	2.6	288
32	Regional dynamics of a patchily distributed herbivore along an altitudinal gradient. Ecological Entomology, 2005, 30, 706-713.	2.2	15
33	CONSEQUENCES OF SPATIAL AUTOCORRELATION FOR THE ANALYSIS OF METAPOPULATION DYNAMICS. Ecology, 2005, 86, 3264-3271.	3.2	31
34	Resource Limitation of Nesting: Chance Favors the Prepared Dung Beetle. Environmental Entomology, 2004, 33, 188-196.	1.4	8
35	Response of host species to brood parasitism in dung beetles: importance of nest location by parasitic species. Functional Ecology, 2004, 18, 914-924.	3.6	9
36	Effects of ungulates on epigeal arthropods in Sierra Nevada National Park (southeast Spain). Biodiversity and Conservation, 2004, 13, 733-752.	2.6	34

#	Article	IF	CITATIONS
37	Effects of brood parasitism on host reproductive success: evidence from larval interactions among dung beetles. Oecologia, 2003, 134, 195-202.	2.0	18
38	Consequences of removing a keystone herbivore for the abundance and diversity of arthropods associated with a cruciferous shrub. Ecological Entomology, 2003, 28, 299-308.	2.2	31
39	ASYMMETRICAL INTERACTIONS BETWEEN UNGULATES AND PHYTOPHAGOUS INSECTS: BEING DIFFERENT MATTERS. Ecology, 2002, 83, 203-211.	3.2	58
40	Asymmetrical Interactions between Ungulates and Phytophagous Insects: Being Different Matters. Ecology, 2002, 83, 203.	3.2	16
41	Adult and Larval Plant Range and Preference in <1>Timarcha lugens 1 (Coleoptera: Chrysomelidae): Strict Monophagy on an Atypical Host. Annals of the Entomological Society of America, 2001, 94, 110-115.	2.5	12
42	Prevalence of parasitization by Diptera in Apis mellifera L in southern Spain. Apidologie, 1996, 27, 467-471.	2.0	5