Matthew J Campen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3493004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. Journal of Clinical Investigation, 2019, 129, 4290-4304.	8.2	264
2	Vehicular Emissions Induce Vascular MMP-9 Expression and Activity Associated With Endothelin-1–Mediated Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 511-517.	2.4	129
3	Microglial priming through the lung—brain axis: the role of air pollutionâ€induced circulating factors. FASEB Journal, 2016, 30, 1880-1891.	0.5	124
4	Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. International Journal of Cardiology, 2013, 166, 246-248.	1.7	118
5	Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood–brain barrier impairment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1968-E1976.	7.1	104
6	Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles. Environmental Health Perspectives, 2011, 119, 312-318.	6.0	97
7	Gasoline Exhaust Emissions Induce Vascular Remodeling Pathways Involved in Atherosclerosis. Toxicological Sciences, 2006, 95, 485-494.	3.1	96
8	Inhaled diesel emissions alter atherosclerotic plaque composition in ApoEâ^'/â^' mice. Toxicology and Applied Pharmacology, 2010, 242, 310-317.	2.8	96
9	Nonparticulate Components of Diesel Exhaust Promote Constriction in Coronary Arteries from ApoEâ^'/â^' Mice. Toxicological Sciences, 2005, 88, 95-102.	3.1	92
10	The Oxidized Low-Density Lipoprotein Receptor Mediates Vascular Effects of Inhaled Vehicle Emissions. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 82-91.	5.6	91
11	Nicotine Primarily Suppresses Lung Th2 but Not Goblet Cell and Muscle Cell Responses to Allergens. Journal of Immunology, 2008, 180, 7655-7663.	0.8	83
12	Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health. Neuroscience and Biobehavioral Reviews, 2018, 92, 226-242.	6.1	82
13	Mechanisms of Diesel-Induced Endothelial Nitric Oxide Synthase Dysfunction in Coronary Arterioles. Environmental Health Perspectives, 2011, 119, 98-103.	6.0	76
14	Circulating Factors Induce Coronary Endothelial Cell Activation Following Exposure to Inhaled Diesel Exhaust and Nitrogen Dioxide in Humans: Evidence From a Novel Translational In Vitro Model. Toxicological Sciences, 2012, 127, 179-186.	3.1	76
15	Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS. Toxicology and Applied Pharmacology, 2008, 230, 346-351.	2.8	71
16	CD36 Mediates Endothelial Dysfunction Downstream of Circulating Factors Induced by O3 Exposure. Toxicological Sciences, 2013, 134, 304-311.	3.1	66
17	Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Scientific Reports, 2017, 7, 42906.	3.3	66
18	CARDIAC AND THERMOREGULATORY EFFECTS OF INSTILLED PARTICULATE MATTER-ASSOCIATED TRANSITION METALS IN HEALTHY AND CARDIOPULMONARY-COMPROMISED RATS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1615-1631.	2.3	65

MATTHEW J CAMPEN

#	Article	IF	CITATIONS
19	Ozone Inhalation Impairs Coronary Artery Dilation via Intracellular Oxidative Stress: Evidence for Serum-Borne Factors as Drivers of Systemic Toxicity. Toxicological Sciences, 2015, 146, 244-253.	3.1	61
20	Impairment of coronary endothelial cell ET _B receptor function after short-term inhalation exposure to whole diesel emissions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R640-R647.	1.8	58
21	Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: A potential role for atrogin-1 in smooth muscle. Vascular Pharmacology, 2012, 56, 64-73.	2.1	53
22	Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 365-371.	3.9	52
23	A Comparison of Vascular Effects from Complex and Individual Air Pollutants Indicates a Role for Monoxide Gases and Volatile Hydrocarbons. Environmental Health Perspectives, 2010, 118, 921-927.	6.0	51
24	Serum from obstructive sleep apnea patients induces inflammatory responses in coronary artery endothelial cells. Atherosclerosis, 2016, 254, 59-66.	0.8	45
25	Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Particle and Fibre Toxicology, 2016, 13, 64.	6.2	40
26	Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure. Toxicological Sciences, 2018, 163, 123-139.	3.1	40
27	Cardiopulmonary response to inhalation of biogenic secondary organic aerosol. Inhalation Toxicology, 2010, 22, 253-265.	1.6	39
28	Mechanisms linking traffic-related air pollution and atherosclerosis. Current Opinion in Pulmonary Medicine, 2012, 18, 155-160.	2.6	39
29	Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Particle and Fibre Toxicology, 2019, 16, 20.	6.2	39
30	Associations of Circulating Oxidized LDL and Conventional Biomarkers of Cardiovascular Disease in a Cross-Sectional Study of the Navajo Population. PLoS ONE, 2016, 11, e0143102.	2.5	37
31	A healthier approach to clinical trials evaluating resveratrol for primary prevention of age-related diseases in healthy populations. Aging, 2013, 5, 495-506.	3.1	37
32	MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor. Toxicological Sciences, 2016, 150, 488-498.	3.1	36
33	Respirable Uranyl-Vanadate-Containing Particulate Matter Derived From a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity. Toxicological Sciences, 2018, 164, 101-114.	3.1	35
34	Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. Environmental Research, 2020, 181, 108913.	7.5	35
35	Metal-Induced Pulmonary Fibrosis. Current Environmental Health Reports, 2018, 5, 486-498.	6.7	34
36	National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects. Research Report (health Effects Institute), 2013, , 5-8.	1.6	33

Matthew J Campen

#	Article	IF	CITATIONS
37	Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice. Inhalation Toxicology, 2012, 24, 270-287.	1.6	32
38	Fresh Gasoline Emissions, Not Paved Road Dust, Alter Cardiac Repolarization in ApoE ^{â^'/â^'} Mice. Cardiovascular Toxicology, 2006, 6, 199-210.	2.7	30
39	Engine exhaust particulate and gas phase contributions to vascular toxicity. Inhalation Toxicology, 2014, 26, 353-360.	1.6	30
40	Inflammatory and Vasoactive Effects of Serum Following Inhalation of Varied Complex Mixtures. Cardiovascular Toxicology, 2016, 16, 163-171.	2.7	30
41	Polystyrene microplastics induce an immunometabolic active state in macrophages. Cell Biology and Toxicology, 2022, 38, 31-41.	5.3	30
42	Arsenic association with circulating oxidized low-density lipoprotein in a Native American community. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 535-548.	2.3	25
43	Cardiac and Thermoregulatory Toxicity of Residual Oil Fly Ash in Cardiopulmonary-Compromised Rats. Inhalation Toxicology, 2000, 12, 7-22.	1.6	24
44	Effects of Nicotine on Cardiovascular Remodeling in a Mouse Model of Systemic Hypertension. Cardiovascular Toxicology, 2013, 13, 364-369.	2.7	24
45	Carbon content in airway macrophages and genomic instability in Chinese carbon black packers. Archives of Toxicology, 2020, 94, 761-771.	4.2	22
46	Endothelial inflammatory transcriptional responses to an altered plasma exposome following inhalation of diesel emissions. Inhalation Toxicology, 2015, 27, 272-280.	1.6	21
47	Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions. Inhalation Toxicology, 2016, 28, 241-250.	1.6	21
48	Oxidative Stress, Inflammation, and Pulmonary Function Assessment in Rats Exposed to Laboratory-Generated Pollutant Mixtures. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1352-1362.	2.3	20
49	Characterization of a novel endothelial biosensor assay reveals increased cumulative serum inflammatory potential in stabilized coronary artery disease patients. Journal of Translational Medicine, 2015, 13, 99.	4.4	20
50	Occupational exposure to carbon black nanoparticles increases inflammatory vascular disease risk: an implication of an ex vivo biosensor assay. Particle and Fibre Toxicology, 2020, 17, 47.	6.2	20
51	Carbon Nanotube Exposure Triggers a Cerebral Peptidomic Response: Barrier Compromise, Neuroinflammation, and a Hyperexcited State. Toxicological Sciences, 2021, 182, 107-119.	3.1	17
52	Longitudinal In Vivo SPECT/CT Imaging Reveals Morphological Changes and Cardiopulmonary Apoptosis in a Rodent Model of Pulmonary Arterial Hypertension. PLoS ONE, 2012, 7, e40910.	2.5	16
53	Neuroinflammatory and Neurometabolomic Consequences From Inhaled Wildfire Smoke-Derived Particulate Matter in the Western United States. Toxicological Sciences, 2022, 186, 149-162.	3.1	16
54	Formation of VascularS-Nitrosothiols and Plasma Nitrates/Nitrites Following Inhalation of Diesel Emissions. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 828-837.	2.3	15

MATTHEW J CAMPEN

#	Article	IF	CITATIONS
55	In Utero Exposure of Female CD-1 Mice to AZT and/or 3TC: II. Persistence of Functional Alterations in Cardiac Tissue. Cardiovascular Toxicology, 2010, 10, 87-99.	2.7	14
56	Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Particle and Fibre Toxicology, 2020, 17, 29.	6.2	12
57	Early Gestational Exposure to Inhaled Ozone Impairs Maternal Uterine Artery and Cardiac Function. Toxicological Sciences, 2021, 179, 121-134.	3.1	11
58	Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. , 2022, 235, 108120.		11
59	Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity. Environmental Science & Technology, 2021, 55, 9949-9957.	10.0	10
60	Inhalation of Tungsten Metal Particulates Alters the Lung and Bone Microenvironments Following Acute Exposure. Toxicological Sciences, 2021, 184, 286-299.	3.1	10
61	Nitric Oxide Synthase: "Enzyme Zero―in Air Pollution–Induced Vascular Toxicity. Toxicological Sciences, 2009, 110, 1-3.	3.1	9
62	Toxic Effects of Particulate Matter Derived from Dust Samples Near the Dzhidinski Ore Processing Mill, Eastern Siberia, Russia. Cardiovascular Toxicology, 2019, 19, 401-411.	2.7	9
63	Vascular endothelium as a target of diesel particulate matter-associated toxicants. Archives of Toxicology, 2012, 86, 517-518.	4.2	8
64	¹¹¹ In-DANBIRT <i>In Vivo</i> Molecular Imaging of Inflammatory Cells in Atherosclerosis. Contrast Media and Molecular Imaging, 2018, 2018, 1-10.	0.8	8
65	Vehicular Particulate Matter (PM) Characteristics Impact Vascular Outcomes Following Inhalation. Cardiovascular Toxicology, 2020, 20, 211-221.	2.7	8
66	Mine-site derived particulate matter exposure exacerbates neurological and pulmonary inflammatory outcomes in an autoimmune mouse model. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 503-517.	2.3	8
67	Short-term exposure to air pollution and biomarkers of cardiovascular effect: A repeated measures study. Environmental Pollution, 2021, 279, 116893.	7.5	8
68	Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure. Toxicology and Applied Pharmacology, 2016, 305, 40-45.	2.8	7
69	Muscle RING Finger-1 Promotes a Maladaptive Phenotype in Chronic Hypoxia-Induced Right Ventricular Remodeling. PLoS ONE, 2014, 9, e97084.	2.5	5
70	Children with Amalgam Dental Restorations Have Significantly Elevated Blood and Urine Mercury Levels. Toxicological Sciences, 2021, 184, 104-126.	3.1	5
71	Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust. Particle and Fibre Toxicology, 2022, 19, 20.	6.2	5
72	Assessment of particulate matter toxicity and physicochemistry at the Claim 28 uranium mine site in Blue Gap, AZ. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 31-48.	2.3	4

MATTHEW J CAMPEN

#	Article	IF	CITATIONS
73	Cardiac and Vascular Atrogin-1 mRNA Expression is Not Associated with Dexamethasone Efficacy in the Monocrotaline Model of Pulmonary Hypertension. Cardiovascular Toxicology, 2012, 12, 226-234.	2.7	3
74	Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. Advances in Neurotoxicology, 2019, , 295-337.	1.9	3
75	Pulmonary delivery of the broad-spectrum matrix metalloproteinase inhibitor marimastat diminishes multiwalled carbon nanotube-induced circulating bioactivity without reducing pulmonary inflammation. Particle and Fibre Toxicology, 2021, 18, 34.	6.2	3
76	Serum peptidome: diagnostic window into pathogenic processes following occupational exposure to carbon nanomaterials. Particle and Fibre Toxicology, 2021, 18, 39.	6.2	3
77	To Breathe or Not to Breathe: Negative Data on Ozone and Vascular Function in an Established Research Model. Toxicological Sciences, 2013, 135, 263-264.	3.1	1
78	Muscle-specific regulation of right ventricular transcriptional responses to chronic hypoxia-induced hypertrophy by the muscle ring finger-1 (MuRF1) ubiquitin ligase in mice. BMC Medical Genetics, 2018, 19, 175.	2.1	1
79	Aging influence on pulmonary and systemic inflammation and neural metabolomics arising from pulmonary multi-walled carbon nanotube exposure in apolipoprotein E-deficient and C57BL/6 female mice. Inhalation Toxicology, 2022, , 1-15.	1.6	1
80	Loss of Cardiac Muscle Ring Fingerâ€1 Augments Right Ventricular Hypertrophy Following Chronic Hypoxiaâ€Induced Pulmonary Hypertension. FASEB Journal, 2012, 26, 1036.9.	0.5	0