
Tian-Sheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3492920/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-pot synthesis of [Mn,H]ZSM-5 and the role of Mn in methanol-to-propylene reaction. Fuel, 2022, 308, 121995.	6.4	20
2	Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite. Journal of Fuel Chemistry and Technology, 2022, 50, 210-217.	2.0	2
3	Cu/ZnV ₂ O ₄ Heterojunction Interface Promoted Methanol and Ethanol Generation from CO ₂ and H ₂ O under UV–Vis Light Irradiation. ACS Omega, 2022, 7, 7278-7286.	3.5	5
4	Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation. Applied Catalysis B: Environmental, 2022, 310, 121303.	20.2	43
5	Cu/PCN Metal-Semiconductor Heterojunction by Thermal Reduction for Photoreaction of CO ₂ -Aerated H ₂ O to CH ₃ OH and C ₂ H ₅ OH. ACS Omega, 2022, 7, 16817-16826.	3.5	3
6	Fe Doped Bimodal Macro/Mesoporous Nickel-Based Catalysts for CO ₂ –CH ₄ Reforming. Industrial & Engineering Chemistry Research, 2022, 61, 10347-10356.	3.7	6
7	Highly selective formation of linear α-olefins over layered and hydrophilic Fe3O4/MAG catalysts in CO hydrogenation. Fuel, 2022, 326, 125054.	6.4	8
8	Phosphatized mild-prepared-NiCo LDHs cabbage-like spheres exhibit excellent performance as a supercapacitor electrode. New Journal of Chemistry, 2021, 45, 251-261.	2.8	25
9	Amorphous Co ₃ S ₄ nanoparticle-modified tubular g-C ₃ N ₄ forms step-scheme heterojunctions for photocatalytic hydrogen production. Catalysis Science and Technology, 2021, 11, 943-955.	4.1	60
10	Oxygenâ€vacancyâ€rich hydrated bimetallic chloride for supercapacitor cathode with remarkable enhanced performance. International Journal of Energy Research, 2021, 45, 2899-2911.	4.5	6
11	Coâ€Niâ€Pâ€B catalyzed hydroformylation of long linear α olefins. Journal of Chemical Technology and Biotechnology, 2021, 96, 1974-1980.	3.2	4
12	Influence of Ni Precursors on the Structure, Performance, and Carbon Deposition of Ni-Al ₂ O ₃ Catalysts for CO Methanation. ACS Omega, 2021, 6, 16373-16380.	3.5	6
13	Cellulose modified iron catalysts for enhanced light olefins and linear C5+ α-olefins from CO hydrogenation. Fuel, 2021, 294, 120504.	6.4	22
14	A Hydrophilic Supported Fe 3 O 4 Catalyst with Enhanced Light Olefins Selectivity in the Fischerâ€Tropsch Synthesis. ChemistrySelect, 2021, 6, 9293-9299.	1.5	2
15	Hierarchical HZSM-5 catalyst for enhanced catalytic performance in the coaromatization of n-hexane and methanol. Microporous and Mesoporous Materials, 2021, 327, 111403.	4.4	7
16	Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution. Fuel, 2021, 305, 121473.	6.4	16
17	Transformation of LPG to light olefins on composite HZSM-5/SAPO-5. New Journal of Chemistry, 2021, 45, 4860-4866.	2.8	14
18	Characterization of Oxygen-Containing Aromatics in a Low-Temperature Coal Tar. Energy & Fuels, 2021, 35, 283-289.	5.1	8

TIAN-SHENG ZHAO

#	Article	IF	CITATIONS
19	Performance of ZIF-67 – Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 382, 123051.	12.7	165
20	Stabilizing Ni on bimodal mesoporous-macroporous alumina with enhanced coke tolerance in dry reforming of methane to syngas. Journal of CO2 Utilization, 2020, 35, 288-297.	6.8	55
21	Insight into molecular characteristics of a Chinese coal via separation, characterization, and data processing. Journal of Separation Science, 2020, 43, 839-846.	2.5	1
22	Preparation of Porous Carbon Materials Derived from Hyper-Cross-Linked Asphalt/Coal Tar and Their High Desulfurization Performance. Langmuir, 2020, 36, 11117-11124.	3.5	14
23	Preparation of Fe3O4@PI and its catalytic performances in Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology, 2020, 48, 813-820.	2.0	11
24	Direct synthesis of [B,H]ZSM-5 by a solid-phase method: Al _F siting and catalytic performance in the MTP reaction. Catalysis Science and Technology, 2020, 10, 7034-7045.	4.1	14
25	Fabrication of Ni-Based Bimodal Porous Catalyst for Dry Reforming of Methane. Catalysts, 2020, 10, 1220.	3.5	8
26	Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design. EnergyChem, 2020, 2, 100038.	19.1	20
27	Cocrystalline Synthesis of ZSMâ€5/ZSMâ€11 and Catalytic Activity for Methanol to Propylene. Crystal Research and Technology, 2020, 55, 2000027.	1.3	2
28	Spinel-structure catalyst catalyzing CO ₂ hydrogenation to full spectrum alkenes with an ultra-high yield. Chemical Communications, 2020, 56, 9372-9375.	4.1	38
29	Facile Synthesis of Protonâ€Type ZSMâ€5 by Using Quasiâ€Solidâ€Phase (QSP) Method. Chemistry - A European Journal, 2020, 26, 8532-8535.	3.3	5
30	Enhancing stability and coaromatization of n-hexane and methanol over [Zn,Cr]/HZSM-5. Applied Catalysis A: General, 2020, 599, 117602.	4.3	13
31	Separation of arenols from a low-temperature coal tar by liquid-liquid extraction. Korean Journal of Chemical Engineering, 2020, 37, 835-838.	2.7	8
32	Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins. Journal of Catalysis, 2019, 377, 81-97.	6.2	50
33	Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer–Tropsch synthesis. Applied Catalysis A: General, 2019, 585, 117184.	4.3	20
34	Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins. Journal of Fuel Chemistry and Technology, 2019, 47, 949-956.	2.0	3
35	Application of a Dual-Solvent Method in Separating Paraffin from a Shale Oil: A Combined Experimental and DFT Study. Industrial & Engineering Chemistry Research, 2019, 58, 17507-17513.	3.7	12
36	Transformation of LPG on HZSM-5 catalyst: Effects of tuned pores and acidity on product distribution. Fuel, 2019, 254, 115615.	6.4	6

TIAN-SHENG ZHAO

#	Article	IF	CITATIONS
37	Atom-economical preparation of polybismaleimide-based microporous organic polymers. Green Chemistry, 2019, 21, 2326-2333.	9.0	21
38	Hydroxides Ni(OH) ₂ &Ce(OH) ₃ as a novel hole storage layer for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 17660-17672.	3.3	19
39	Enhanced Catalytic Performance for CO ₂ Hydrogenation to Methanol over Nâ€doped Graphene Incorporated Cuâ€ZnOâ€Al ₂ O ₃ Catalysts. ChemistrySelect, 2019, 4, 78-83.	1.5	17
40	Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution. Fuel, 2019, 239, 44-52.	6.4	99
41	Highly selective conversion of CO2 to light olefins via Fischer-Tropsch synthesis over stable layered K–Fe–Ti catalysts. Applied Catalysis A: General, 2019, 573, 32-40.	4.3	56
42	An Effective Approach for Separating Carbazole and Its Derivates from Coal-Tar-Derived Anthracene Oil Using Ionic Liquids. Energy & Fuels, 2019, 33, 513-522.	5.1	22
43	Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite. Journal of Catalysis, 2019, 369, 382-395.	6.2	72
44	Promotion effects of Ce added Fe–Zr–K on CO2 hydrogenation to light olefins. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 575-585.	1.7	29
45	Effect of preparation methods on the structure and catalytic performance of Fe–Zn/K catalysts for CO 2 hydrogenation to light olefins. Chinese Journal of Chemical Engineering, 2018, 26, 761-767.	3.5	46
46	Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Applied Catalysis B: Environmental, 2018, 232, 420-428.	20.2	112
47	Recent advances in multifunctional capsule catalysts in heterogeneous catalysis. Chinese Journal of Chemical Physics, 2018, 31, 393-403.	1.3	9
48	Preparation of asphalt-based microporous organic polymers catalyzed by heteropoly acids. Green Chemistry, 2018, 20, 4746-4751.	9.0	15
49	Effects of synergy between Cr2O3 and hierarchical HZSM-5 on transformation of LPG toward propylene and ethylene. Fuel Processing Technology, 2018, 179, 53-59.	7.2	21
50	Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation. Journal of Fuel Chemistry and Technology, 2017, 45, 1489-1498.	2.0	8
51	Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process. Chinese Journal of Catalysis, 2016, 37, 510-516.	14.0	47
52	Hydrothermal preparation of Fe–Zr catalysts for the direct conversion of syngas to light olefins. RSC Advances, 2016, 6, 34204-34211.	3.6	19
53	Composite HZSM-5 with Nanosheets for Higher Light Olefin Selectivity and Longer Lifetime in Catalytic Cracking Mixed Light Hydrocarbons. Chemistry Letters, 2015, 44, 1697-1699.	1.3	10
54	Effects of synthesis conditions on the yields and properties of HZSMâ€5. Crystal Research and Technology, 2015, 50, 522-527.	1.3	7

TIAN-SHENG ZHAO

#	Article	IF	CITATIONS
55	Selective formation of light olefins from CO2 hydrogenation over Fe–Zn–K catalysts. Journal of CO2 Utilization, 2015, 12, 95-100.	6.8	147
56	Effect of preparation of Fe–Zr–K catalyst on the product distribution of CO ₂ hydrogenation. RSC Advances, 2015, 5, 80196-80202.	3.6	29
57	Synthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: Effect of carburization pretreatment. Fuel, 2013, 109, 116-123.	6.4	31
58	Carbon modified Fe–Mn–K catalyst for the synthesis of light olefins from CO hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 437-445.	1.7	15
59	Rose-Like 2D Layered Silicate Supported Fe3O4 Catalysts for Improved Selectivity Toward Olefins in CO Hydrogenation. Catalysis Letters, 0, , .	2.6	1