Tian-Sheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3492920/publications.pdf

Version: 2024-02-01

59	1,554	20	38
papers	citations	h-index	g-index
59	59	59	1312 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Performance of ZIF-67 – Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 382, 123051.	12.7	165
2	Selective formation of light olefins from CO2 hydrogenation over Fe–Zn–K catalysts. Journal of CO2 Utilization, 2015, 12, 95-100.	6.8	147
3	Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Applied Catalysis B: Environmental, 2018, 232, 420-428.	20.2	112
4	Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution. Fuel, 2019, 239, 44-52.	6.4	99
5	Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite. Journal of Catalysis, 2019, 369, 382-395.	6.2	72
6	Amorphous Co ₃ S ₄ nanoparticle-modified tubular g-C ₃ N ₄ forms step-scheme heterojunctions for photocatalytic hydrogen production. Catalysis Science and Technology, 2021, 11, 943-955.	4.1	60
7	Highly selective conversion of CO2 to light olefins via Fischer-Tropsch synthesis over stable layered K–Fe–Ti catalysts. Applied Catalysis A: General, 2019, 573, 32-40.	4.3	56
8	Stabilizing Ni on bimodal mesoporous-macroporous alumina with enhanced coke tolerance in dry reforming of methane to syngas. Journal of CO2 Utilization, 2020, 35, 288-297.	6.8	55
9	Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins. Journal of Catalysis, 2019, 377, 81-97.	6.2	50
10	Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process. Chinese Journal of Catalysis, 2016, 37, 510-516.	14.0	47
11	Effect of preparation methods on the structure and catalytic performance of Fe–Zn/K catalysts for CO 2 hydrogenation to light olefins. Chinese Journal of Chemical Engineering, 2018, 26, 761-767.	3.5	46
12	Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation. Applied Catalysis B: Environmental, 2022, 310, 121303.	20.2	43
13	Spinel-structure catalyst catalyzing CO ₂ hydrogenation to full spectrum alkenes with an ultra-high yield. Chemical Communications, 2020, 56, 9372-9375.	4.1	38
14	Synthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: Effect of carburization pretreatment. Fuel, 2013, 109, 116-123.	6.4	31
15	Effect of preparation of Fe–Zr–K catalyst on the product distribution of CO ₂ hydrogenation. RSC Advances, 2015, 5, 80196-80202.	3.6	29
16	Promotion effects of Ce added Fe–Zr–K on CO2 hydrogenation to light olefins. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 575-585.	1.7	29
17	Phosphatized mild-prepared-NiCo LDHs cabbage-like spheres exhibit excellent performance as a supercapacitor electrode. New Journal of Chemistry, 2021, 45, 251-261.	2.8	25
18	An Effective Approach for Separating Carbazole and Its Derivates from Coal-Tar-Derived Anthracene Oil Using Ionic Liquids. Energy & Samp; Fuels, 2019, 33, 513-522.	5.1	22

#	Article	IF	CITATIONS
19	Cellulose modified iron catalysts for enhanced light olefins and linear C5+ α-olefins from CO hydrogenation. Fuel, 2021, 294, 120504.	6.4	22
20	Effects of synergy between Cr2O3 and hierarchical HZSM-5 on transformation of LPG toward propylene and ethylene. Fuel Processing Technology, 2018, 179, 53-59.	7.2	21
21	Atom-economical preparation of polybismaleimide-based microporous organic polymers. Green Chemistry, 2019, 21, 2326-2333.	9.0	21
22	Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer–Tropsch synthesis. Applied Catalysis A: General, 2019, 585, 117184.	4.3	20
23	Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design. EnergyChem, 2020, 2, 100038.	19.1	20
24	One-pot synthesis of [Mn,H]ZSM-5 and the role of Mn in methanol-to-propylene reaction. Fuel, 2022, 308, 121995.	6.4	20
25	Hydrothermal preparation of Fe–Zr catalysts for the direct conversion of syngas to light olefins. RSC Advances, 2016, 6, 34204-34211.	3.6	19
26	Hydroxides Ni(OH) ₂ &Ce(OH) ₃ as a novel hole storage layer for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 17660-17672.	3.3	19
27	Enhanced Catalytic Performance for CO ₂ Hydrogenation to Methanol over Nâ€doped Graphene Incorporated Cuâ€ZnOâ€Al ₂ O ₃ Catalysts. ChemistrySelect, 2019, 4, 78-83.	1.5	17
28	Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution. Fuel, 2021, 305, 121473.	6.4	16
29	Carbon modified Fe–Mn–K catalyst for the synthesis of light olefins from CO hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 437-445.	1.7	15
30	Preparation of asphalt-based microporous organic polymers catalyzed by heteropoly acids. Green Chemistry, 2018, 20, 4746-4751.	9.0	15
31	Preparation of Porous Carbon Materials Derived from Hyper-Cross-Linked Asphalt/Coal Tar and Their High Desulfurization Performance. Langmuir, 2020, 36, 11117-11124.	3.5	14
32	Direct synthesis of [B,H]ZSM-5 by a solid-phase method: Al _F siting and catalytic performance in the MTP reaction. Catalysis Science and Technology, 2020, 10, 7034-7045.	4.1	14
33	Transformation of LPG to light olefins on composite HZSM-5/SAPO-5. New Journal of Chemistry, 2021, 45, 4860-4866.	2.8	14
34	Enhancing stability and coaromatization of n-hexane and methanol over [Zn,Cr]/HZSM-5. Applied Catalysis A: General, 2020, 599, 117602.	4.3	13
35	Application of a Dual-Solvent Method in Separating Paraffin from a Shale Oil: A Combined Experimental and DFT Study. Industrial & Experimental and DFT Study. Industrial & Experimental Chemistry Research, 2019, 58, 17507-17513.	3.7	12
36	Preparation of Fe3O4@Pl and its catalytic performances in Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology, 2020, 48, 813-820.	2.0	11

3

#	Article	IF	Citations
37	Composite HZSM-5 with Nanosheets for Higher Light Olefin Selectivity and Longer Lifetime in Catalytic Cracking Mixed Light Hydrocarbons. Chemistry Letters, 2015, 44, 1697-1699.	1.3	10
38	Recent advances in multifunctional capsule catalysts in heterogeneous catalysis. Chinese Journal of Chemical Physics, 2018, 31, 393-403.	1.3	9
39	Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation. Journal of Fuel Chemistry and Technology, 2017, 45, 1489-1498.	2.0	8
40	Fabrication of Ni-Based Bimodal Porous Catalyst for Dry Reforming of Methane. Catalysts, 2020, 10, 1220.	3.5	8
41	Separation of arenols from a low-temperature coal tar by liquid-liquid extraction. Korean Journal of Chemical Engineering, 2020, 37, 835-838.	2.7	8
42	Characterization of Oxygen-Containing Aromatics in a Low-Temperature Coal Tar. Energy & C	5.1	8
43	Highly selective formation of linear α-olefins over layered and hydrophilic Fe3O4/MAG catalysts in CO hydrogenation. Fuel, 2022, 326, 125054.	6.4	8
44	Effects of synthesis conditions on the yields and properties of HZSMâ€5. Crystal Research and Technology, 2015, 50, 522-527.	1.3	7
45	Hierarchical HZSM-5 catalyst for enhanced catalytic performance in the coaromatization of n-hexane and methanol. Microporous and Mesoporous Materials, 2021, 327, 111403.	4.4	7
46	Transformation of LPG on HZSM-5 catalyst: Effects of tuned pores and acidity on product distribution. Fuel, 2019, 254, 115615.	6.4	6
47	Oxygenâ€vacancyâ€rich hydrated bimetallic chloride for supercapacitor cathode with remarkable enhanced performance. International Journal of Energy Research, 2021, 45, 2899-2911.	4.5	6
48	Influence of Ni Precursors on the Structure, Performance, and Carbon Deposition of Ni-Al ₂ O ₃ Catalysts for CO Methanation. ACS Omega, 2021, 6, 16373-16380.	3.5	6
49	Fe Doped Bimodal Macro/Mesoporous Nickel-Based Catalysts for CO ₂ –CH ₄ Reforming. Industrial & Discrete Reforming Research, 2022, 61, 10347-10356.	3.7	6
50	Facile Synthesis of Protonâ€Type ZSMâ€5 by Using Quasiâ€Solidâ€Phase (QSP) Method. Chemistry - A European Journal, 2020, 26, 8532-8535.	3.3	5
51	Cu/ZnV ₂ O ₄ Heterojunction Interface Promoted Methanol and Ethanol Generation from CO ₂ and H ₂ O under UV–Vis Light Irradiation. ACS Omega, 2022, 7, 7278-7286.	3.5	5
52	Coâ€Niâ€Pâ€B catalyzed hydroformylation of long linear α olefins. Journal of Chemical Technology and Biotechnology, 2021, 96, 1974-1980.	3.2	4
53	Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins. Journal of Fuel Chemistry and Technology, 2019, 47, 949-956.	2.0	3
54	Cu/PCN Metal-Semiconductor Heterojunction by Thermal Reduction for Photoreaction of CO ₂ -Aerated H ₂ O to CH ₃ OH and C ₂ H ₅ OH. ACS Omega, 2022, 7, 16817-16826.	3.5	3

#	Article	IF	CITATIONS
55	Cocrystalline Synthesis of ZSM $\hat{a}\in 5$ /ZSM $\hat{a}\in 1$ and Catalytic Activity for Methanol to Propylene. Crystal Research and Technology, 2020, 55, 2000027.	1.3	2
56	A Hydrophilic Supported Fe 3 O 4 Catalyst with Enhanced Light Olefins Selectivity in the Fischerâ€Tropsch Synthesis. ChemistrySelect, 2021, 6, 9293-9299.	1.5	2
57	Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite. Journal of Fuel Chemistry and Technology, 2022, 50, 210-217.	2.0	2
58	Insight into molecular characteristics of a Chinese coal via separation, characterization, and data processing. Journal of Separation Science, 2020, 43, 839-846.	2.5	1
59	Rose-Like 2D Layered Silicate Supported Fe3O4 Catalysts for Improved Selectivity Toward Olefins in CO Hydrogenation. Catalysis Letters, 0, , .	2.6	1