Hongling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3492867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Porous Graphene Films with Largeâ€Area Inâ€Plane Exterior Skins. Advanced Materials Interfaces, 2022, 9, .	1.9	3
2	Thermally Conductive and Leakage-Proof Phase-Change Materials Composed of Dense Graphene Foam and Paraffin for Thermal Management. ACS Applied Nano Materials, 2022, 5, 8362-8370.	2.4	10
3	An effective thermal conductivity model for architected phase change material enhancer: Theoretical and experimental investigations. International Journal of Heat and Mass Transfer, 2021, 176, 121364.	2.5	11
4	Boron nanosheets induced microstructure and charge transfer tailoring in carbon nanofibrous mats towards highly efficient water splitting. Nano Energy, 2021, 88, 106246.	8.2	15
5	Lightweight, Superelastic Boron Nitride/Polydimethylsiloxane Foam as Air Dielectric Substitute for Multifunctional Capacitive Sensor Applications. Advanced Functional Materials, 2020, 30, 1909604.	7.8	117
6	Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Research, 2020, 13, 2371-2377.	5.8	5
7	Synthesis of Atomically Thin 1Tâ€TaSe ₂ with a Strongly Enhanced Chargeâ€Densityâ€Wave Order. Advanced Functional Materials, 2020, 30, 2001903.	7.8	15
8	Supercompressible Coaxial Carbon Nanotube@Graphene Arrays with Invariant Viscoelasticity over Ⱐ100 to 500 °C in Ambient Air. ACS Applied Materials & Interfaces, 2018, 10, 9688-9695.	4.0	10
9	Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano, 2018, 12, 1262-1272.	7.3	177
10	Largeâ€Area Atomic Layers of the Chargeâ€Đensityâ€Wave Conductor TiSe ₂ . Advanced Materials, 2018, 30, 1704382.	11,1	60
11	Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance. ACS Applied Materials & Interfaces, 2018, 10, 41707-41716.	4.0	55
12	Waferâ€Scale Vertically Aligned Carbon Nanotubes Locked by In Situ Hydrogelation toward Strengthening Static and Dynamic Compressive Responses. Macromolecular Materials and Engineering, 2018, 303, 1800024.	1.7	6
13	Concentric and Spiral Few-Layer Graphene: Growth Driven by Interfacial Nucleation vs Screw Dislocation. Chemistry of Materials, 2018, 30, 6858-6866.	3.2	21
14	Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale, 2018, 10, 16243-16251.	2.8	15
15	Thermal Conductivity Enhancement of Coaxial Carbon@Boron Nitride Nanotube Arrays. ACS Applied Materials & Interfaces, 2017, 9, 14555-14560.	4.0	35
16	Biocompatible Hydroxylated Boron Nitride Nanosheets/Poly(vinyl alcohol) Interpenetrating Hydrogels with Enhanced Mechanical and Thermal Responses. ACS Nano, 2017, 11, 3742-3751.	7.3	191
17	Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes. RSC Advances, 2017, 7, 12511-12517.	1.7	14
18	Multifunctional and highly compressive cross-linker-free sponge based on reduced graphene oxide and boron nitride nanosheets. Chemical Engineering Journal, 2017, 328, 825-833.	6.6	30

Hongling Li

#	Article	IF	CITATIONS
19	Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Nanoscale, 2016, 8, 11114-11122.	2.8	30
20	Trimethylamine Borane: A New Single-Source Precursor for Monolayer h-BN Single Crystals and h-BCN Thin Films. Chemistry of Materials, 2016, 28, 2180-2190.	3.2	62
21	Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 2016, 4, 3754-3764.	5.2	136
22	Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale, 2016, 8, 2434-2444.	2.8	81
23	Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. Small, 2015, 11, 6491-6499.	5.2	148
24	Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances. Electrochimica Acta, 2015, 166, 197-205.	2.6	69
25	Facile Synthesis of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Forests by Template-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 7156-7163.	3.2	47