
Alejandra Tomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3492220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EGF receptor trafficking: consequences for signaling and cancer. Trends in Cell Biology, 2014, 24, 26-34.	7.9	636
2	Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nature Communications, 2018, 9, 1602.	12.8	162
3	Regulation of pancreatic β-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. Journal of Cell Science, 2006, 119, 2156-2167.	2.0	143
4	Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. Journal of Cell Biology, 2004, 165, 813-822.	5.2	98
5	Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467.	12.8	88
6	Dual Effect of Cell-Cell Contact Disruption on Cytosolic Calcium and Insulin Secretion. Endocrinology, 2008, 149, 2494-2505.	2.8	84
7	Focal Adhesion Remodeling Is Crucial for Glucose-Stimulated Insulin Secretion and Involves Activation of Focal Adhesion Kinase and Paxillin. Diabetes, 2011, 60, 1146-1157.	0.6	71
8	Control of insulin secretion by GLP-1. Peptides, 2018, 100, 75-84.	2.4	69
9	Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro. Nature Communications, 2019, 10, 2168.	12.8	68
10	Novel Mechanistic Link between Focal Adhesion Remodeling and Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2012, 287, 2423-2436.	3.4	66
11	Munc 18â€1 and Granuphilin Collaborate During Insulin Granule Exocytosis. Traffic, 2008, 9, 813-832.	2.7	63
12	WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway. Nature Communications, 2015, 6, 7324.	12.8	63
13	Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biology, 2019, 17, e3000097.	5.6	61
14	Calcium- and Cell Cycle-dependent Association of Annexin 11 with the Nuclear Envelope. Journal of Biological Chemistry, 2003, 278, 20210-20216.	3.4	56
15	Rab GTPase-Activating Protein AS160 Is a Major Downstream Effector of Protein Kinase B/Akt Signaling in Pancreatic β-Cells. Diabetes, 2008, 57, 1195-1204.	0.6	50
16	Role of the Rho-ROCK (Rho-Associated Kinase) Signaling Pathway in the Regulation of Pancreatic β-Cell Function. Endocrinology, 2009, 150, 2072-2079.	2.8	50
17	Small Interfering RNA-Mediated Suppression of Proislet Amyloid Polypeptide Expression Inhibits Islet Amyloid Formation and Enhances Survival of Human Islets in Culture. Diabetes, 2008, 57, 3045-3055.	0.6	48
18	A Targeted RNAi Screen Identifies Endocytic Trafficking Factors That Control GLP-1 Receptor Signaling in Pancreatic β-Cells. Diabetes, 2018, 67, 385-399.	0.6	41

Alejandra Tomas

#	Article	IF	CITATIONS
19	Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. Journal of Biological Chemistry, 2021, 296, 100133.	3.4	41
20	The Zinc Transporter Slc30a8/ZnT8 Is Required in a Subpopulation of Pancreatic α-Cells for Hypoglycemia-induced Glucagon Secretion. Journal of Biological Chemistry, 2015, 290, 21432-21442.	3.4	40
21	New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. Journal of Molecular Biology, 2020, 432, 1347-1366.	4.2	40
22	Dynamin Is Functionally Coupled to Insulin Granule Exocytosis. Journal of Biological Chemistry, 2007, 282, 33530-33536.	3.4	36
23	Signalling, trafficking and glucoregulatory properties of glucagonâ€like peptideâ€1 receptor agonists exendinâ€4 and lixisenatide. British Journal of Pharmacology, 2020, 177, 3905-3923.	5.4	36
24	Disconnect between signalling potency and inÂvivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists. Molecular Metabolism, 2020, 37, 100991.	6.5	32
25	The Influence of Peptide Context on Signaling and Trafficking of Glucagon-like Peptide-1 Receptor Biased Agonists. ACS Pharmacology and Translational Science, 2020, 3, 345-360.	4.9	32
26	The Interplay of Glucagon-Like Peptide-1 Receptor Trafficking and Signalling in Pancreatic Beta Cells. Frontiers in Endocrinology, 2021, 12, 678055.	3.5	32
27	Potent Prearranged Positive Allosteric Modulators of the Glucagonâ€like Peptideâ€1 Receptor. ChemistryOpen, 2017, 6, 501-505.	1.9	31
28	Ureidopeptide GLP-1 analogues with prolonged activity <i>in vivo via</i> signal bias and altered receptor trafficking. Chemical Science, 2019, 10, 9872-9879.	7.4	31
29	Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. International Journal of Molecular Sciences, 2020, 21, 8404.	4.1	28
30	Pro-Survival Role of Gelsolin in Mouse Â-Cells. Diabetes, 2007, 56, 80-87.	0.6	27
31	Conditional and Reversible Activation of Class A and B G Protein-Coupled Receptors Using Tethered Pharmacology. ACS Central Science, 2018, 4, 166-179.	11.3	27
32	Moesin and cortactin control actin-dependent multivesicular endosome biogenesis. Molecular Biology of the Cell, 2016, 27, 3305-3316.	2.1	23
33	Receptor Activity-Modifying Protein 2 (RAMP2) alters glucagon receptor trafficking in hepatocytes with functional effects on receptor signalling. Molecular Metabolism, 2021, 53, 101296.	6.5	23
34	The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Molecular Metabolism, 2020, 40, 101015.	6.5	22
35	Regulation of Insulin Secretion by Phosphatidylinositolâ€4,5â€Bisphosphate. Traffic, 2010, 11, 123-137.	2.7	17
36	Spatiotemporal control of GLP-1 receptor activity. Current Opinion in Endocrine and Metabolic Research, 2021, 16, 19-27.	1.4	17

3

Alejandra Tomas

#	Article	IF	CITATIONS
37	Effects on pancreatic Beta and other Islet cells of the glucose-dependent insulinotropic polypeptide. Peptides, 2020, 125, 170201.	2.4	15
38	Dysregulation of the Pdx1/Ovol2/Zeb2 axis in dedifferentiated β-cells triggers the induction of genes associated with epithelial–mesenchymal transition in diabetes. Molecular Metabolism, 2021, 53, 101248.	6.5	14
39	Mitofusins <i>Mfn1</i> and <i>Mfn2</i> Are Required to Preserve Glucose- but Not Incretin-Stimulated β-Cell Connectivity and Insulin Secretion. Diabetes, 2022, 71, 1472-1489.	0.6	14
40	Acylation of the Incretin Peptide Exendin-4 Directly Impacts Glucagon-Like Peptide-1 Receptor Signaling and Trafficking. Molecular Pharmacology, 2021, 100, 319-334.	2.3	13
41	Stress-specific p38 MAP kinase activation is sufficient to drive EGF receptor endocytosis but not nuclear translocation. Journal of Cell Science, 2017, 130, 2481-2490.	2.0	11
42	GRK2 regulates GLP-1R-mediated early phase insulin secretion in vivo. BMC Biology, 2021, 19, 40.	3.8	10
43	Glucose-Dependent miR-125b Is a Negative Regulator of β-Cell Function. Diabetes, 2022, 71, 1525-1545.	0.6	10
44	Evaluation of efficacy- versus affinity-driven agonism with biased GLP-1R ligands P5 and exendin-F1. Biochemical Pharmacology, 2021, 190, 114656.	4.4	8
45	Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Molecular Metabolism, 2021, 51, 101242.	6.5	7
46	Expanded LUXendin Color Palette for GLP1R Detection and Visualization In Vitro and In Vivo. Jacs Au, 2022, 2, 1007-1017.	7.9	6
47	Hepatocyte cholesterol content modulates glucagon receptor signalling. Molecular Metabolism, 2022, 63, 101530.	6.5	4
48	Stress reveals new destination for EGF receptor. Cell Cycle, 2015, 14, 3343-3344.	2.6	3