Murat Günel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3492154/publications.pdf

Version: 2024-02-01

133 11,737 51 103
papers citations h-index g-index

137 137 20977
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The integrated multiomic diagnosis of sporadic meningiomas: a review of its clinical implications. Journal of Neuro-Oncology, 2022, 156, 205-214.	2.9	12
2	Clinical Implications of the Genomic Profiling of Sporadic Multiple Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, .	0.8	0
3	NF2 Mutant Sporadic Meningiomas Differ Based on Location Relative to the Tentorium. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, .	0.8	O
4	TRAF7 Mutated Subgroups Differ in Sphenoid Wing Meningiomas with Hyperostosis. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, .	0.8	0
5	Biallelic BICD2 variant is a novel candidate for Cohen-like syndrome. Journal of Human Genetics, 2022, 67, 553-556.	2.3	3
6	The quest to unravel the complex genomics of intracranial aneurysms., 2022, 1, 281-282.		0
7	Mutation spectrum of congenital heart disease in a consanguineous Turkish population. Molecular Genetics & Constant Genetics & Constant Medicine, 2022, 10, e1944.	1.2	4
8	Genomic profiling of sporadic multiple meningiomas. BMC Medical Genomics, 2022, 15, 112.	1.5	3
9	Associations of meningioma molecular subgroup and tumor recurrence. Neuro-Oncology, 2021, 23, 783-794.	1.2	83
10	Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal of Experimental Medicine, 2021, 218, .	8.5	677
11	Exome sequencing identifies SLIT2 variants in primary CNS lymphoma. British Journal of Haematology, 2021, 193, 375-379.	2.5	9
12	Clinical characteristics and outcomes for 7,995 patients with SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0243291.	2.5	31
13	Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas. Neuro-Oncology, 2021, 23, 1922-1935.	1.2	33
14	The genetic structure of the Turkish population reveals high levels of variation and admixture. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
15	Type of bony involvement predicts genomic subgroup in sphenoid wing meningiomas. Journal of Neuro-Oncology, 2021, 154, 237-246.	2.9	11
16	<i>DIAPH1</i> Variants in Non–East Asian Patients With Sporadic Moyamoya Disease. JAMA Neurology, 2021, 78, 993.	9.0	33
17	Clinical and genomic factors associated with seizures in meningiomas. Journal of Neurosurgery, 2021, 135, 835-844.	1.6	17
18	Spatially Resolved and Quantitative Analysis of the Immunological Landscape in Human Meningiomas. Journal of Neuropathology and Experimental Neurology, 2021, 80, 150-159.	1.7	9

#	Article	IF	Citations
19	Genetically Determined Lowâ€Density Lipoprotein Cholesterol and Risk of Subarachnoid Hemorrhage. Annals of Neurology, 2021, , .	5.3	1
20	INNV-09. SURGICAL STRATEGIES FOR OLDER PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi107-vi107.	1.2	0
21	EPCO-29. GENOMIC PROFILING OF SPORADIC MULTIPLE MENINGIOMAS. Neuro-Oncology, 2021, 23, vi8-vi8.	1.2	0
22	NIMG-64. TYPE OF BONY INVOLVEMENT PREDICTS GENOMIC SUBGROUP IN SPHENOID WING MENINGIOMAS. Neuro-Oncology, 2021, 23, vi144-vi144.	1.2	0
23	PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nature Medicine, 2021, 27, 2165-2175.	30.7	23
24	Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathologica, 2020, 139, 415-442.	7.7	38
25	Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine, 2020, 26, 1754-1765.	30.7	84
26	Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia. IScience, 2020, 23, 101552.	4.1	32
27	Genomic alterations in Turcot syndrome: Insights from whole exome sequencing. Journal of the Neurological Sciences, 2020, 417, 117056.	0.6	1
28	Molecular genetics of meningiomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 169, 101-119.	1.8	5
29	A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma. European Radiology, 2020, 30, 3073-3082.	4.5	13
30	Genetically Elevated <scp>LDL</scp> Associates with Lower Risk of Intracerebral Hemorrhage. Annals of Neurology, 2020, 88, 56-66.	5. 3	35
31	A Quantitative Assessment of Pre-Operative MRI Reports in Glioma Patients: Report Metrics and IDH Prediction Ability. Frontiers in Oncology, 2020, 10, 600327.	2.8	1
32	Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. Journal of Neurosurgery, 2020, 133, 1345-1354.	1.6	83
33	The Genomic Landscape of Meningiomas. , 2020, , 35-55.		1
34	NCOG-50. CLINICAL AND GENOMIC FACTORS ASSOCIATED WITH SEIZURES IN MENINGIOMAS. Neuro-Oncology, 2020, 22, ii140-ii140.	1.2	1
35	Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Frontiers in Cellular Neuroscience, 2019, 13, 425.	3.7	14
36	GENE-56. MENINGIOMA GENOMIC SUBGROUP AS A PREDICTOR OF POST-OPERATIVE PATIENT OUTCOMES: IMPLICATIONS FOR TREATMENT AND FOLLOW-UP. Neuro-Oncology, 2019, 21, vi109-vi110.	1.2	0

#	Article	IF	CITATIONS
37	Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation. Neuron, 2019, 101, 429-443.e4.	8.1	56
38	Insights into genetics, human biology and disease gleaned from family based genomic studies. Genetics in Medicine, 2019, 21, 798-812.	2.4	161
39	MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive <i>c</i> erebellar, <i>o</i> cular, cranio <i>f</i> acial and <i>g</i> enital features (COFG) Tj ETQq1 1 0.784	-33 .4 rgBT	/Q₅erlock 1
40	MNGI-09. MENINGIOMA WITH MULTIPLE DRIVERS: GENOMIC LANDSCAPE AND CLINICAL CORRELATIONS. Neuro-Oncology, 2019, 21, vi141-vi141.	1.2	O
41	Genotype–phenotype investigation of 35 patients from 11 unrelated families with camptodactyly–arthropathy–coxa vara–pericarditis (<scp>CACP</scp>) syndrome. Molecular Genetics & amp; Genomic Medicine, 2018, 6, 230-248.	1.2	15
42	Novel compound heterozygous mutations in <i>GPT2</i> linked to microcephaly, and intellectual developmental disability with or without spastic paraplegia. American Journal of Medical Genetics, Part A, 2018, 176, 421-425.	1.2	8
43	Use of telomerase promoter mutations to mark specific molecular subsets with reciprocal clinical behavior in IDH mutant and IDH wild-type diffuse gliomas. Journal of Neurosurgery, 2018, 128, 1102-1114.	1.6	26
44	Human Genetics and Molecular Mechanisms of Congenital Hydrocephalus. World Neurosurgery, 2018, 119, 441-443.	1.3	12
45	9p24 triplication in syndromic hydrocephalus with diffuse villous hyperplasia of the choroid plexus. Journal of Physical Education and Sports Management, 2018, 4, a003145.	1.2	8
46	Loss of <i>Protocadherinâ€12</i> <scp>L</scp> eads to <scp>D</scp> iencephalicâ€ <scp>M</scp> esencephalic <scp>J</scp> unction <scp>D</scp> ysplasia <scp>S</scp> yndrome. Annals of Neurology, 2018, 84, 638-647.	5.3	19
47	De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron, 2018, 99, 302-314.e4.	8.1	112
48	Biallelic loss of human CTNNA2, encoding $\hat{l}\pm N$ -catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics, 2018, 50, 1093-1101.	21.4	70
49	De novo <i>MYH9</i> mutation in congenital scalp hemangioma. Journal of Physical Education and Sports Management, 2018, 4, a002998.	1.2	9
50	2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science Translational Medicine, 2017, 9, .	12.4	420
51	Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.	21.4	66
52	Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications, 2017, 8, 14433.	12.8	156
53	Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5503-5508.	7.1	24
54	Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Scientific Reports, 2017, 7, 43708.	3.3	37

#	Article	IF	CITATIONS
55	Exome analysis of the evolutionary path of hepatocellular adenoma-carcinoma transition, vascular invasion and brain dissemination. Journal of Hepatology, 2017, 67, 186-191.	3.7	7
56	Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Medicine, 2017, 9, 12.	8.2	20
57	Personalized Medicine Through Advanced Genomics. , 2017, , 31-48.		1
58	AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience, 2017, 20, 1329-1341.	14.8	179
59	Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Medicine, 2017, 23, 997-1003.	30.7	256
60	ALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features. Journal of Physical Education and Sports Management, 2017, 3, a001859.	1.2	20
61	Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme. PLoS ONE, 2017, 12, e0181538.	2.5	34
62	PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight, 2016, 1, .	5.0	182
63	Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension. Hepatology, 2016, 63, 1977-1986.	7.3	46
64	Renal involvement in patients with mucolipidosis Illalpha/beta: Causal relation or coâ€occurrence?. American Journal of Medical Genetics, Part A, 2016, 170, 1187-1195.	1.2	4
65	Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell, 2016, 167, 1481-1494.e18.	28.9	265
66	Digenic mutations of human OCRL paralogs in Dent's disease type 2 associated with Chiari I malformation. Human Genome Variation, 2016, 3, 16042.	0.7	8
67	B-Cell Depletion Reduces the Maturation of Cerebral Cavernous Malformations in Murine Models. Journal of NeuroImmune Pharmacology, 2016, 11, 369-377.	4.1	39
68	Familial occurrence of brain arteriovenous malformation: a novel ACVRL1 mutation detected by whole exome sequencing. Journal of Neurosurgery, 2016, 126, 1879-1883.	1.6	16
69	Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics, 2016, 48, 1253-1259.	21.4	265
70	<i>ACOX2</i> deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11289-11293.	7.1	75
71	Genomic Landscape of Brain Tumors. , 2016, , 653-663.		0
72	Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. American Journal of Human Genetics, 2016, 99, 501-510.	6.2	70

#	Article	IF	CITATIONS
73	Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly. American Journal of Human Genetics, 2016, 99, 1181-1189.	6.2	30
74	A patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP. Journal of Human Genetics, 2016, 61, 395-403.	2.3	14
75	Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nature Genetics, 2016, 48, 59-66.	21.4	253
76	Wholeâ€exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT 2 D as a recurrently mutated gene. Genes Chromosomes and Cancer, 2015, 54, 542-554.	2.8	57
77	Functional Synergy between Cholecystokinin Receptors CCKAR and CCKBR in Mammalian Brain Development. PLoS ONE, 2015, 10, e0124295.	2.5	34
78	Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Science Signaling, 2015, 8, ra6.	3.6	72
79	Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nature Genetics, 2015, 47, 809-813.	21.4	180
80	GENO-15IDENTIFICATION AND GENOMIC ANALYSIS OF HYPER-MUTATED AND ULTRA-MUTATED GBMS. Neuro-Oncology, 2015, 17, v94.3-v94.	1.2	0
81	Augmentor $\hat{l}\pm$ and \hat{l}^2 (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligandâ \in "receptor interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15862-15867.	7.1	125
82	The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiology of Aging, 2015, 36, 1764.e9-1764.e18.	3.1	78
83	The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. American Journal of Human Genetics, 2015, 97, 199-215.	6.2	574
84	Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. European Journal of Human Genetics, 2015, 23, 1482-1487.	2.8	62
85	Somatic <i>POLE</i> mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro-Oncology, 2015, 17, 1356-1364.	1.2	94
86	Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nature Genetics, 2015, 47, 528-534.	21.4	111
87	A congenital disorder of deglycosylation: Biochemical characterization of <i>N</i> glycanase 1 deficiency in patient fibroblasts. Glycobiology, 2015, 25, 836-844.	2.5	40
88	NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. European Journal of Medical Genetics, 2015, 58, 39-43.	1.3	69
89	Results of a national cerebrovascular neurosurgery survey on the management of cerebral vasospasm/delayed cerebral ischemia. Journal of NeuroInterventional Surgery, 2015, 7, 408-411.	3.3	18
90	Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genetics in Medicine, 2015, 17, 188-196.	2.4	116

#	Article	IF	Citations
91	Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. European Journal of Human Genetics, 2015, 23, 165-172.	2.8	57
92	High Risk Population Isolate Reveals Low Frequency Variants Predisposing to Intracranial Aneurysms. PLoS Genetics, 2014, 10, e1004134.	3.5	55
93	Extraction of Fronto-orbital Shower Hook through Transcranial Orbitotomy. Craniomaxillofacial Trauma & Reconstruction, 2014, 7, 147-148.	1.3	2
94	Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron, 2014, 84, 1226-1239.	8.1	95
95	Brain Malformations Associated With Knobloch Syndromeâ€"Review of Literature, Expanding Clinical Spectrum, and Identification of Novel Mutations. Pediatric Neurology, 2014, 51, 806-813.e8.	2.1	43
96	Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations. Journal of Hepatology, 2014, 61, 1178-1183.	3.7	48
97	Seizure control for intracranial arteriovenous malformations is directly related to treatment modality: a meta-analysis. Journal of NeuroInterventional Surgery, 2014, 6, 684-690.	3.3	75
98	Mutations in CSPP1 Lead to Classical Joubert Syndrome. American Journal of Human Genetics, 2014, 94, 80-86.	6.2	75
99	Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science, 2014, 343, 506-511.	12.6	466
100	CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration. Cell, 2014, 157, 651-663.	28.9	228
101	FBXO7–R498X mutation: Phenotypic variability from chorea to early onset parkinsonism within a family. Parkinsonism and Related Disorders, 2014, 20, 1253-1256.	2.2	29
102	Autosomal recessive spastic tetraplegia caused by <i>AP4M1</i> and <i>AP4B1</i> gene mutation: Expansion of the facial and neuroimaging features. American Journal of Medical Genetics, Part A, 2014, 1677-1685.	1.2	55
103	<i>Ccm3</i> , a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development (Cambridge), 2014, 141, 1404-1415.	2.5	30
104	A congenital disorder of deglycosylation: biochemical characterization of Nâ€glycanase 1 deficiency in patient fibroblasts (607.3). FASEB Journal, 2014, 28, 607.3.	0.5	0
105	Genomic Analysis of Non- <i>NF2</i> Meningiomas Reveals Mutations in <i>TRAF7</i> , <i>KLF4</i> , <i>AKT1</i> , and <i>SMO</i> . Science, 2013, 339, 1077-1080.	12.6	714
106	Missense mutation in the ATPase, aminophospholipid transporter protein ATP8A2 is associated with cerebellar atrophy and quadrupedal locomotion. European Journal of Human Genetics, 2013, 21, 281-285.	2.8	110
107	Wholeâ€exome sequencing identified a patient with TMCO1 defect syndrome and expands the phenotic spectrum. Clinical Genetics, 2013, 84, 394-395.	2.0	19
108	Recessive LAMC3 mutations cause malformations of occipital cortical development. Nature Genetics, 2011, 43, 590-594.	21.4	102

#	Article	IF	CITATIONS
109	The Essential Role of Centrosomal NDE1 in Human Cerebral Cortex Neurogenesis. American Journal of Human Genetics, 2011, 88, 523-535.	6.2	146
110	Common variant near the endothelin receptor type A (<i>EDNRA</i>) gene is associated with intracranial aneurysm risk. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19707-19712.	7.1	100
111	Loss of <i>cerebral cavernous malformation 3</i> (<i>Ccm3</i>) in neuroglia leads to CCM and vascular pathology. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3737-3742.	7.1	92
112	Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Research, 2011, 21, 1995-2003.	5 . 5	62
113	Novel VLDLR microdeletion identified in two Turkish siblings with pachygyria and pontocerebellar atrophy. Neurogenetics, 2010, 11, 319-325.	1.4	19
114	A patient with Duchenne muscular dystrophy and autism demonstrates a hemizygous deletion affecting <i>Dystrophin</i> . American Journal of Medical Genetics, Part A, 2010, 152A, 1039-1042.	1.2	8
115	Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature, 2010, 467, 207-210.	27.8	457
116	Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genetics, 2010, 42, 420-425.	21.4	262
117	The critical role of hemodynamics in the development of cerebral vascular disease. Journal of Neurosurgery, 2010, 112, 1240-1253.	1.6	197
118	The syndrome of pachygyria, mental retardation, and arachnoid cysts maps to 11p15. American Journal of Medical Genetics, Part A, 2009, 149A, 2569-2572.	1.2	8
119	A novel heterozygous deletion within the 3' region of the PAX6 gene causing isolated aniridia in a large family group. Journal of Clinical Neuroscience, 2009, 16, 1610-1614.	1.5	25
120	Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population. Neurogenetics, 2008, 9, 119-125.	1.4	14
121	Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nature Genetics, 2008, 40, 1472-1477.	21.4	247
122	Genetics Of Intracranial Aneurysms. Neurosurgery, 2007, 60, 213-226.	1.1	86
123	Apparently novel genetic syndrome of pachygyria, mental retardation, seizure, and arachnoid cysts. American Journal of Medical Genetics, Part A, 2007, 143A, 672-677.	1.2	14
124	Rapid identification of disease-causing mutations using copy number analysis within linkage intervals. Human Mutation, 2007, 28, 1236-1240.	2.5	12
125	Response to Letter by Stahl and Felbor. Stroke, 2006, 37, 2215-2216.	2.0	0
126	Molecular Genetic Analysis of Two Large Kindreds With Intracranial Aneurysms Demonstrates Linkage to 11q24-25 and 14q23-31. Stroke, 2006, 37, 1021-1027.	2.0	58

#	Article	IF	CITATIONS
127	Mapping a Mendelian Form of Intracranial Aneurysm to 1p34.3-p36.13. American Journal of Human Genetics, 2005, 76, 172-179.	6.2	80
128	Hypertension, Age, and Location Predict Rupture of Small Intracranial Aneurysms. Neurosurgery, 2005, 57, 676-683.	1.1	15
129	Mutational analysis of 206 families with cavernous malformations. Journal of Neurosurgery, 2003, 99, 38-43.	1.6	66
130	<i>KRIT1</i> , a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10677-10682.	7.1	108
131	Human Hypertension Caused by Mutations in WNK Kinases. Science, 2001, 293, 1107-1112.	12.6	1,344
132	Carotid endarterectomy prevention strategies and complications management. Neurosurgery Clinics of North America, 2000, 11, 351-64.	1.7	0
133	Counting strokes. Nature Genetics, 1996, 13, 384-385.	21.4	13