
MarÃ-a Reyes-Batlle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3492088/publications.pdf Version: 2024-02-01

MADÃA REVES-RATILE

#	Article	IF	CITATIONS
1	Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii. Antimicrobial Agents and Chemotherapy, 2015, 59, 2817-2824.	3.2	50
2	Isolation and characterization of Acanthamoeba strains from soil samples in Gran Canaria, Canary Islands, Spain. Parasitology Research, 2014, 113, 1383-1388.	1.6	44
3	Voriconazole as a first-line treatment against potentially pathogenic Acanthamoeba strains from Peru. Parasitology Research, 2014, 113, 755-759.	1.6	37
4	Presence of potentially pathogenic free-living amoebae strains from well water samples in Guinea-Bissau. Pathogens and Global Health, 2014, 108, 206-211.	2.3	34
5	In vitro effects of triterpenic acids from olive leaf extracts on the mitochondrial membrane potential of promastigote stage of Leishmania spp. Phytomedicine, 2014, 21, 1689-1694.	5.3	33
6	Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitology Research, 2018, 117, 2855-2867.	1.6	32
7	Morphological Features and <i>In Vitro</i> Cytopathic Effect of <i>Acanthamoeba griffini</i> Trophozoites Isolated from a Clinical Case. Journal of Parasitology Research, 2014, 2014, 1-10.	1.2	31
8	Activity of olive leaf extracts against the promastigote stage of Leishmania species and their correlation with the antioxidant activity. Experimental Parasitology, 2014, 141, 106-111.	1.2	31
9	Amoebicidal activity of α-bisabolol, the main sesquiterpene in chamomile (Matricaria recutita L.) essential oil against the trophozoite stage of Acanthamoeba castellani Neff. Acta Parasitologica, 2017, 62, 290-295.	1.1	30
10	Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS ONE, 2017, 12, e0183795.	2.5	29
11	The isolation of Balamuthia mandrillaris from environmental sources from Peru. Parasitology Research, 2014, 113, 2509-2513.	1.6	28
12	Staurosporine from Streptomyces sanyensis activates Programmed Cell Death in Acanthamoeba via the mitochondrial pathway and presents low in vitro cytotoxicity levels in a macrophage cell line. Scientific Reports, 2019, 9, 11651.	3.3	27
13	Genotyping of potentially pathogenic Acanthamoeba strains isolated from nasal swabs of healthy individuals in Peru. Acta Tropica, 2014, 130, 7-10.	2.0	26
14	Isolation and molecular characterization of Acanthamoeba genotypes in recreational and domestic water sources from Jamaica, West Indies. Journal of Water and Health, 2015, 13, 909-919.	2.6	25
15	Anti-Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii. Marine Drugs, 2018, 16, 443.	4.6	25
16	Detection of Acanthamoeba on the ocular surface in a Spanish population using the Schirmer strip test: pathogenic potential, molecular classification and evaluation of the sensitivity to chlorhexidine and voriconazole of the isolated Acanthamoeba strains. Journal of Medical Microbiology, 2015, 64, 849-853.	1.8	25
17	Isolation and Genotyping of <i>Acanthamoeba</i> Strains from Soil Sources from Jamaica, West Indies. Journal of Eukaryotic Microbiology, 2015, 62, 416-421.	1.7	24
18	Evaluation of Oxasqualenoids from the Red Alga Laurencia viridis against Acanthamoeba. Marine Drugs, 2019, 17, 420.	4.6	24

#	Article	IF	CITATIONS
19	Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis. Pathogens, 2020, 9, 350.	2.8	23
20	Bioassay guided isolation and identification of anti-Acanthamoeba compounds from Tunisian olive leaf extracts. Experimental Parasitology, 2014, 145, S111-S114.	1.2	22
21	Perifosine Mechanisms of Action in Leishmania Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	21
22	Toxic effects of selected proprietary dry eye drops on Acanthamoeba. Scientific Reports, 2018, 8, 8520.	3.3	21
23	In Vitro Activity of Statins against Naegleria fowleri. Pathogens, 2019, 8, 122.	2.8	21
24	Isolation and molecular characterization of Acanthamoeba and Balamuthia mandrillaris from combination shower units in Costa Rica. Parasitology Research, 2014, 113, 4117-4122.	1.6	20
25	Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomedicine and Pharmacotherapy, 2020, 130, 110518.	5.6	20
26	Isolation of Naegleria spp. from a Brazilian Water Source. Pathogens, 2020, 9, 90.	2.8	20
27	Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in Lima, Peru. Experimental Parasitology, 2014, 145, S127-S130.	1.2	19
28	InÂvitro amoebicidal and antioxidant activities of some Tunisian seaweeds. Experimental Parasitology, 2017, 183, 76-80.	1.2	18
29	Ursolic Acid Derivatives as Potential Agents Against Acanthamoeba Spp Pathogens, 2019, 8, 130.	2.8	18
30	<i>In Vitro</i> Activities of Hexaazatrinaphthylenes against Leishmania spp. Antimicrobial Agents and Chemotherapy, 2015, 59, 2867-2874.	3.2	16
31	Fatal Meningoencephalitis in Child and Isolation of <i>Naegleria fowleri</i> from Hot Springs in Costa Rica. Emerging Infectious Diseases, 2015, 21, 382-384.	4.3	16
32	Amoebicidal Activity of Caffeine and Maslinic Acid by the Induction of Programmed Cell Death in Acanthamoeba. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	16
33	Acanthamoeba genotypes T2, T4, and T11 in soil sources from El Hierro island, Canary Islands, Spain. Parasitology Research, 2016, 115, 2953-2956.	1.6	15
34	Evaluation of the anti- Acanthamoeba activity of two commercial eye drops commonly used to lower eye pressure. Experimental Parasitology, 2017, 183, 117-123.	1.2	15
35	Laurinterol from Laurencia johnstonii eliminates Naegleria fowleri triggering PCD by inhibition of ATPases. Scientific Reports, 2020, 10, 17731.	3.3	15
36	Selective activity of Oleanolic and Maslinic Acids on the Amastigote form of Spp. Iranian Journal of Pharmaceutical Research, 2017, 16, 1190-1193.	0.5	15

#	Article	IF	CITATIONS
37	Molecular characterization of Acanthamoeba strains isolated from domestic dogs in Tenerife, Canary Islands, Spain. Archives of Microbiology, 2015, 197, 639-643.	2.2	14
38	Withanolides from Withania aristata as Antikinetoplastid Agents through Induction of Programmed Cell Death. Pathogens, 2019, 8, 172.	2.8	14
39	Screening of the pathogen box for the identification of anti-Acanthamoeba agents. Experimental Parasitology, 2019, 201, 90-92.	1.2	14
40	Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: Structure and inÂvitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers. Experimental Parasitology, 2017, 183, 245-253.	1.2	13
41	Amoebicidal, antimicrobial and inÂvitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Experimental Parasitology, 2017, 183, 224-230.	1.2	13
42	Anti- Acanthamoeba activity of Tunisian Thymus capitatus essential oil and organic extracts. Experimental Parasitology, 2017, 183, 231-235.	1.2	13
43	In vitro activity of 1H-phenalen-1-one derivatives against Leishmania spp. and evidence of programmed cell death. Parasites and Vectors, 2019, 12, 601.	2.5	13
44	Fluvastatin and atorvastatin induce programmed cell death in the brain eating amoeba Naegleria fowleri. Biomedicine and Pharmacotherapy, 2020, 130, 110583.	5.6	13
45	Evaluation of Indolocarbazoles from Streptomyces sanyensis as a Novel Source of Therapeutic Agents against the Brain-Eating Amoeba Naegleria fowleri. Microorganisms, 2020, 8, 789.	3.6	13
46	A multisystemic Acanthamoeba infection in a dog in Tenerife, Canary Islands, Spain. Veterinary Parasitology, 2014, 205, 707-711.	1.8	12
47	PrestoBlue® and AlamarBlue® are equally useful as agents to determine the viability of Acanthamoeba trophozoites. Experimental Parasitology, 2014, 145, S69-S72.	1.2	12
48	Assessment of the antiprotozoal activity of Pulicaria inuloides extracts, an Algerian medicinal plant: leishmanicidal bioguided fractionation. Parasitology Research, 2018, 117, 531-537.	1.6	12
49	Free living amoebae isolation in irrigation waters and soils of an insular arid agroecosystem. Science of the Total Environment, 2021, 753, 141833.	8.0	12
50	Isolation and molecular characterization of a Naegleria strain from a recreational water fountain in Tenerife, Canary Islands, Spain. Acta Parasitologica, 2017, 62, 265-268.	1.1	11
51	Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Marine Drugs, 2019, 17, 588.	4.6	11
52	Isolation and molecular identification of free-living amoebae from dishcloths in Tenerife, Canary Islands, Spain. Parasitology Research, 2019, 118, 927-933.	1.6	11
53	Exploring the Anti-Infective Value of Inuloxin A Isolated from <i>Inula viscosa</i> against the Brain-Eating Amoeba (<i>Naegleria fowleri</i>) by Activation of Programmed Cell Death. ACS Chemical Neuroscience, 2021, 12, 195-202.	3.5	11
54	Antiamoebic effects of sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata. Bioorganic Chemistry, 2021, 108, 104682.	4.1	11

#	Article	IF	CITATIONS
55	Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target. Antimicrobial Agents and Chemotherapy, 2014, 58, 2150-2155.	3.2	10
56	Correlation of radical-scavenging capacity and amoebicidal activity of Matricaria recutita L. (Asteraceae). Experimental Parasitology, 2017, 183, 212-217.	1.2	10
57	Chemical composition and anti- Acanthamoeba activity of Melaleuca styphelioides essential oil. Experimental Parasitology, 2017, 183, 104-108.	1.2	10
58	Evaluation of the sensitivity to chlorhexidine, voriconazole and itraconazole of T4 genotype Acanthamoeba isolated from Mexico. Experimental Parasitology, 2019, 197, 29-35.	1.2	10
59	<i>Balamuthia mandrillaris</i> therapeutic mud bath in Jamaica. Epidemiology and Infection, 2015, 143, 2245-2248.	2.1	9
60	Isolation and Molecular Identification of Vermamoeba vermiformis Strains from Soil Sources in El Hierro Island, Canary Islands, Spain. Current Microbiology, 2016, 73, 104-107.	2.2	9
61	Identification of N-acyl quinolin-2(1H)-ones as new selective agents against clinical isolates of Acanthamoeba keratitis. Bioorganic Chemistry, 2020, 99, 103791.	4.1	9
62	Silver Nanoparticles Conjugated with Contact Lens Solutions May Reduce the Risk of Acanthamoeba Keratitis. Pathogens, 2021, 10, 583.	2.8	9
63	Isolation and Molecular Characterization of <i>Acanthamoeba</i> Strains from Dental Units in Costa Rica. Journal of Eukaryotic Microbiology, 2015, 62, 733-736.	1.7	8
64	Isolation of thermotolerant Vermamoeba vermiformis strains from water sources in Lanzarote Island, Canary Islands, Spain. Acta Parasitologica, 2016, 61, 650-3.	1.1	8
65	Genotyping of clinical isolates of Acanthamoeba genus in Venezuela. Acta Parasitologica, 2016, 61, 796-801.	1.1	8
66	Variation in Campylobacter jejuni culturability in presence of Acanthamoeba castellanii Neff. Experimental Parasitology, 2017, 183, 178-181.	1.2	8
67	Antioxidant and Leishmanicidal Evaluation of Pulicaria Inuloides Root Extracts: A Bioguided Fractionation. Pathogens, 2019, 8, 201.	2.8	8
68	InÂvitro activity of 1 H -phenalen-1-one derivatives against Acanthamoeba castellanii Neff and their mechanisms of cell death. Experimental Parasitology, 2017, 183, 218-223.	1.2	7
69	Isolation and Molecular Identification of Naegleria australiensis in Irrigation Water of Fuerteventura Island, Spain. Acta Parasitologica, 2019, 64, 331-335.	1.1	7
70	New phenalenone analogues with improved activity against Leishmania species. Biomedicine and Pharmacotherapy, 2020, 132, 110814.	5.6	7
71	Free-Living Amoebae in Soil Samples from Santiago Island, Cape Verde. Microorganisms, 2021, 9, 1460.	3.6	7
72	Optimized combinations of statins and azoles against Acanthamoeba trophozoites and cysts in vitro. Asian Pacific Journal of Tropical Medicine, 2019, 12, 283.	0.8	7

#	Article	IF	CITATIONS
73	Statins Induce Actin Cytoskeleton Disassembly and an Apoptosis-Like Process in Acanthamoeba spp Antibiotics, 2022, 11, 280.	3.7	7
74	InÂvitro interactions of Acanthamoeba castellanii Neff and Vibrio harveyi. Experimental Parasitology, 2017, 183, 167-170.	1.2	6
75	Presence of Acanthamoeba in the ocular surface in a Spanish population of contact lens wearers. Acta Parasitologica, 2018, 63, 393-396.	1.1	6
76	Acanthamoeba keratitis in Mexico: Report of a clinical case and importance of sensitivity assays for a better outcome. Experimental Parasitology, 2019, 196, 22-27.	1.2	6
77	The type 2 statins, cerivastatin, rosuvastatin and pitavastatin eliminate Naegleria fowleri at low concentrations and by induction of programmed cell death (PCD). Bioorganic Chemistry, 2021, 110, 104784.	4.1	6
78	A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Memorias Do Instituto Oswaldo Cruz, 0, 117, .	1.6	6
79	High occurrence of Acanthamoeba genotype T4 in soil sources from BolÃvar State, Venezuela. Acta Parasitologica, 2016, 61, 466-70.	1.1	5
80	Treatment of intraocular spread of acanthamoeba after tectonic corneal graft in acanthamoeba keratitis. Eye, 2018, 32, 1286-1287.	2.1	5
81	In vitro evaluation of commercial foam Belcils® on Acanthamoeba spp. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 136-143.	3.4	5
82	Combined Amoebicidal Effect of Atorvastatin and Commercial Eye Drops against Acanthamoeba castellanii Neff: In Vitro Assay Based on Mixture Design. Pathogens, 2020, 9, 219.	2.8	5
83	Bio-guided isolation of leishmanicidal and trypanocidal constituents from Pituranthos battandieri aerial parts. Parasitology International, 2021, 82, 102300.	1.3	5
84	High oxygen concentrations inhibit Acanthamoeba spp Parasitology Research, 2021, 120, 3001-3005.	1.6	5
85	Discovery of New Chemical Tools against Leishmania amazonensis via the MMV Pathogen Box. Pharmaceuticals, 2021, 14, 1219.	3.8	5
86	New Insights in Acanthamoeba. Pathogens, 2022, 11, 609.	2.8	5
87	Development of an indirect immunofluorescence technique for the evaluation of generated antibody titers against Erysipelothrix rhusiopathiae in captive bottlenose dolphins (Tursiops truncatus). Archives of Microbiology, 2014, 196, 785-790.	2.2	4
88	In Vitro Evaluation of Combined Commercialized Ophthalmic Solutions Against Acanthamoeba Strains. Pathogens, 2019, 8, 109.	2.8	4
89	Evaluation of the occurrence of pathogenic freeâ€ŀiving amoeba and bacteria in 20 public indoor swimming pool facilities. MicrobiologyOpen, 2021, 10, e1159.	3.0	4
90	Antiamoeboid activity of squamins C–F, cyclooctapeptides from Annona globifora. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 67-79.	3.4	4

#	Article	IF	CITATIONS
91	Pathogenic free-living amoebae from water sources in Cape Verde. Parasitology Research, 2022, 121, 2399-2404.	1.6	4
92	In vitro amoebicidal effects of arabinogalactan-based ophthalmic solution. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 9-16.	3.4	3
93	Vannellid Species Isolated from Freshwater Source in a Park in Jamaica, West Indies. Microbiology Insights, 2015, 8s1, MBI.S30537.	2.0	2
94	Therapeutic targets and investigated treatment strategies inAcanthamoebakeratitis. Expert Opinion on Orphan Drugs, 2016, 4, 1069-1073.	0.8	2
95	Photodynamic treatment induced membrane cell damage in Acanthamoeba castellanii Neff. Dyes and Pigments, 2020, 180, 108481.	3.7	2
96	Discovery of Amoebicidal Compounds by Combining Computational and Experimental Approaches. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	2
97	Isobenzofuran-1(3H)-one derivatives: Amoebicidal activity and program cell death in Acanthamoeba castellanii Neff. Biomedicine and Pharmacotherapy, 2022, 150, 113062.	5.6	2
98	Evaluation of Two Commercially Available Immunological Kits for the Diagnosis of Helicobacter spp. in Bottlenose Dolphins (Tursiops truncatus). Current Microbiology, 2015, 70, 685-689.	2.2	1
99	Structure elucidation, total assignment of the ¹ H and ¹³ C chemical shifts, and absolute configuration by NMR techniques of dammaraneâ€type triterpenes from <scp><i>Hippocratea volubilis</i>>/scp>. Magnetic Resonance in Chemistry, 2018, 56, 46-54.</scp>	1.9	1
100	In vitro validation of the amoebicidal activity of commercial eye drops as second activity. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 15, 144-151.	3.4	1
101	Naphthyridine Derivatives Induce Programmed Cell Death in Naegleria fowleri. Pharmaceuticals, 2021, 14, 1013.	3.8	1
102	Apoptotic protein profile in Leishmania donovani after treatment with hexaazatrinaphthylenes derivatives. Experimental Parasitology, 2016, 166, 83-88.	1.2	0
103	Gene silencing and therapeutic targets against Acanthamoeba infections. , 2018, , .		0
104	Influence of Winter Storms on the Sea Urchin Pathogen Assemblages. Frontiers in Marine Science, 2022, 9, .	2.5	0