
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491768/publications.pdf Version: 2024-02-01

ΚΛΥ ΗΟΕΜΑΝΝ

#	Article	IF	CITATIONS
1	Inhibition of death receptor signals by cellular FLIP. Nature, 1997, 388, 190-195.	27.8	2,382
2	Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437, 1167-1172.	27.8	2,136
3	SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box. Cell, 1996, 86, 263-274.	28.9	1,336
4	Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 1997, 386, 517-521.	27.8	1,256
5	BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth. Journal of Experimental Medicine, 1999, 189, 1747-1756.	8.5	1,213
6	Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10955-10959.	7.1	1,092
7	The PROSITE database, its status in 1999. Nucleic Acids Research, 1999, 27, 215-219.	14.5	1,089
8	The PROSITE database, its status in 1997. Nucleic Acids Research, 1997, 25, 217-221.	14.5	963
9	The PROSITE database, its status in 2002. Nucleic Acids Research, 2002, 30, 235-238.	14.5	908
10	RIP1 is an essential mediator of Toll-like receptor 3–induced NF-κB activation. Nature Immunology, 2004, 5, 503-507.	14.5	744
11	A superfamily of conserved domains in DNA damage―responsive cell cycle checkpoint proteins. FASEB Journal, 1997, 11, 68-76.	0.5	684
12	Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochemical Journal, 2014, 460, 127-141.	3.7	674
13	TRAIL Receptors 1 (DR4) and 2 (DR5) Signal FADD-Dependent Apoptosis and Activate NF-κB. Immunity, 1997, 7, 831-836.	14.3	658
14	Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis. Science, 2005, 310, 1821-1824.	12.6	637
15	Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature, 1997, 388, 593-598.	27.8	620
16	Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair. Cell, 2007, 129, 289-301.	28.9	608
17	Selective autophagy: ubiquitin-mediated recognition and beyond. Nature Cell Biology, 2010, 12, 836-841.	10.3	567
18	Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 2008, 453, 481-488.	27.8	553

#	Article	IF	CITATIONS
19	The CARD domain: a new apoptotic signalling motif. Trends in Biochemical Sciences, 1997, 22, 155-156.	7.5	495
20	APRIL, a New Ligand of the Tumor Necrosis Factor Family, Stimulates Tumor Cell Growth. Journal of Experimental Medicine, 1998, 188, 1185-1190.	8.5	473
21	A superfamily of membrane-bound O -acyltransferases with implications for Wnt signaling. Trends in Biochemical Sciences, 2000, 25, 111-112.	7.5	451
22	A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends in Biochemical Sciences, 2001, 26, 347-350.	7.5	414
23	OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell, 2013, 153, 1312-1326.	28.9	395
24	The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends in Biochemical Sciences, 1996, 21, 172-173.	7.5	376
25	WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature, 2009, 457, 57-62.	27.8	360
26	Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nature Cell Biology, 2016, 18, 1173-1184.	10.3	350
27	Mammalian Homologues of Caenorhabditis elegans unc-13 Gene Define Novel Family of C2-domain Proteins. Journal of Biological Chemistry, 1995, 270, 25273-25280.	3.4	342
28	The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Current Biology, 2001, 11, 1722-1727.	3.9	334
29	The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends in Biochemical Sciences, 1995, 20, 347-349.	7.5	333
30	Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Current Biology, 1998, 8, 885-889.	3.9	301
31	Cloning and characterization of the mammalian brain-specific, Mg ²⁺ -dependent neutral sphingomyelinase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5895-5900.	7.1	297
32	PICH, a Centromere-Associated SNF2 Family ATPase, Is Regulated by Plk1 andÂRequired for the Spindle Checkpoint. Cell, 2007, 128, 101-114.	28.9	297
33	MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Molecular Cell, 2016, 63, 146-155.	9.7	297
34	DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NFâ€₽B. EMBO Reports, 2009, 10, 916-922.	4.5	290
35	ldentification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2. Cell, 2010, 142, 65-76.	28.9	284
36	When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Reviews Molecular Cell Biology, 2003, 4, 491-497.	37.0	278

#	Article	IF	CITATIONS
37	SAM as a protein interaction domain involved in developmental regulation. Protein Science, 1997, 6, 249-253.	7.6	276
38	A flexible motif search technique based on generalized profiles. Computers & Chemistry, 1996, 20, 3-23.	1.2	275
39	Ubiquitin-dependent Proteolytic Control of SUMO Conjugates. Journal of Biological Chemistry, 2007, 282, 34167-34175.	3.4	274
40	Characterization of two receptors for TRAIL1. FEBS Letters, 1997, 416, 329-334.	2.8	271
41	A conserved domain is present in different families of vesicular fusion proteins: A new superfamily. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3046-3051.	7.1	266
42	TRAMP, a Novel Apoptosis-Mediating Receptor with Sequence Homology to Tumor Necrosis Factor Receptor 1 and Fas(Apo-1/CD95). Immunity, 1997, 6, 79-88.	14.3	265
43	The PCI domain: a common theme in three multiprotein complexes. Trends in Biochemical Sciences, 1998, 23, 204-205.	7.5	265
44	Cloned mammalian neutral sphingomyelinase: Functions in sphingolipid signaling?. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3638-3643.	7.1	264
45	The PROSITE database, its status in 1995. Nucleic Acids Research, 1996, 24, 189-196.	14.5	259
46	The Structure of the CYLD USP Domain Explains Its Specificity for Lys63-Linked Polyubiquitin and Reveals a B Box Module. Molecular Cell, 2008, 29, 451-464.	9.7	251
47	The S. pombe cdc15 gene is a key element in the reorganization of F-actin at mitosis. Cell, 1995, 82, 435-444.	28.9	250
48	Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature, 2009, 458, 228-232.	27.8	245
49	Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO Journal, 2012, 31, 3691-3703.	7.8	237
50	The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Current Biology, 2001, 11, R118-R120.	3.9	227
51	Characterization of Schizosaccharomyces pombe Hus1: a PCNA-Related Protein That Associates with Rad1 and Rad9. Molecular and Cellular Biology, 2000, 20, 1254-1262.	2.3	222
52	A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO Journal, 2002, 21, 1565-1576.	7.8	203
53	The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe Genes and Development, 1997, 11, 1519-1534.	5.9	201
54	Inhibition of Homologous Recombination by the PCNA-Interacting Protein PARI. Molecular Cell, 2012, 45, 75-86.	9.7	196

#	Article	IF	CITATIONS
55	MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochemistry, 2002, 3, 28.	4.4	194
56	The discoidin domain family revisited: New members from prokaryotes and a homologyâ€based fold prediction. Protein Science, 1998, 7, 1626-1631.	7.6	183
57	Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 2015, 348, 1253671.	12.6	183
58	Ceramide in apoptosis—does it really matter?. Trends in Biochemical Sciences, 1998, 23, 374-377.	7.5	181
59	The fight of viruses against apoptosis. Current Opinion in Genetics and Development, 1998, 8, 82-87.	3.3	180
60	Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 2018, 556, 381-385.	27.8	178
61	Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Structural and Molecular Biology, 2009, 16, 1328-1330.	8.2	177
62	Structurally and functionally unique complexins at retinal ribbon synapses. Journal of Cell Biology, 2005, 169, 669-680.	5.2	176
63	Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nature Genetics, 2014, 46, 1239-1244.	21.4	165
64	The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature, 2005, 435, 1257-1261.	27.8	161
65	Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochemical Journal, 2000, 349, 247-253.	3.7	156
66	Bipartite Signals Mediate Subcellular Targeting of Tail-anchored Membrane Proteins in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 8219-8223.	3.4	156
67	The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Current Biology, 1999, 9, 1427-1433.	3.9	151
68	NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes and Development, 2009, 23, 729-739.	5.9	147
69	Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature, 1999, 399, 371-375.	27.8	143
70	Ubiquitinâ€specific proteaseâ€like 1 (USPL1) is a SUMO isopeptidase with essential, nonâ€catalytic functions. EMBO Reports, 2012, 13, 930-938.	4.5	143
71	A model for structural similarity between different SNARE complexes based on sequence relationships. Trends in Cell Biology, 1998, 8, 260-262.	7.9	142
72	SUMO playing tag with ubiquitin. Trends in Biochemical Sciences, 2012, 37, 23-31.	7.5	139

#	Article	IF	CITATIONS
73	Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Human Molecular Genetics, 2003, 12, 2845-2852.	2.9	138
74	Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochemical Journal, 2000, 349, 247.	3.7	136
75	Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends in Genetics, 2000, 16, 202-203.	6.7	136
76	The MIT Domain of UBPY Constitutes a CHMP Binding and Endosomal Localization Signal Required for Efficient Epidermal Growth Factor Receptor Degradation. Journal of Biological Chemistry, 2007, 282, 30929-30937.	3.4	136
77	Dissection of USP catalytic domains reveals five common insertion points. Molecular BioSystems, 2009, 5, 1797.	2.9	135
78	A latrophilin/CL-1-like GPS domain in polycystin-1. Current Biology, 1999, 9, R585-R588.	3.9	134
79	The Yeast GID Complex, a Novel Ubiquitin Ligase (E3) Involved in the Regulation of Carbohydrate Metabolism. Molecular Biology of the Cell, 2008, 19, 3323-3333.	2.1	132
80	Comparative analysis of genome sequences of three isolates of Orf virus reveals unexpected sequence variation. Virus Research, 2006, 116, 146-158.	2.2	131
81	Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene, 1998, 17, 2637-2643.	5.9	130
82	The Zinc Finger of the CSN-Associated Deubiquitinating Enzyme USP15 Is Essential to Rescue the E3 Ligase Rbx1. Current Biology, 2005, 15, 1217-1221.	3.9	130
83	Overexpression of Helicard, a CARD-Containing Helicase Cleaved during Apoptosis, Accelerates DNA Degradation. Current Biology, 2002, 12, 838-843.	3.9	129
84	ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules. Molecular Cell, 2018, 70, 906-919.e7.	9.7	123
85	Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO Journal, 2004, 23, 4857-4867.	7.8	122
86	Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO Journal, 2006, 25, 3576-3585.	7.8	122
87	A novel inter action motif, SARAH, connects three classes of tumor suppressor. Current Biology, 2003, 13, R899-R900.	3.9	121
88	Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair, 2009, 8, 544-556.	2.8	119
89	Identification of a New Murine Tumor Necrosis Factor Receptor Locus That Contains Two Novel Murine Receptors for Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL). Journal of Biological Chemistry, 2003, 278, 5444-5454.	3.4	116
90	Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2720-2725.	7.1	116

#	Article	IF	CITATIONS
91	Vps13D Encodes a Ubiquitin-Binding Protein that Is Required for the Regulation of Mitochondrial Size and Clearance. Current Biology, 2018, 28, 287-295.e6.	3.9	115
92	Bcl-rambo, a Novel Bcl-2 Homologue That Induces Apoptosis via Its Unique C-terminal Extension. Journal of Biological Chemistry, 2001, 276, 19548-19554.	3.4	114
93	F-Box-Directed CRL Complex Assembly and Regulation by the CSN and CAND1. Molecular Cell, 2009, 35, 586-597.	9.7	110
94	A common protein interaction domain links two recently identified epilepsy genes. Human Molecular Genetics, 2002, 11, 1757-1762.	2.9	108
95	Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO Journal, 2007, 26, 3451-3462.	7.8	108
96	A family of unconventional deubiquitinases with modular chain specificity determinants. Nature Communications, 2018, 9, 799.	12.8	108
97	PCI Complexes: Beyond the Proteasome, CSN, and eIF3 Troika. Molecular Cell, 2009, 35, 260-264.	9.7	105
98	The death domain motif found in Fas (Apo-1) and TNF receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Letters, 1995, 371, 321-323.	2.8	102
99	Activating the ubiquitin family: UBA6 challenges the field. Trends in Biochemical Sciences, 2008, 33, 230-237.	7.5	101
100	Equine Herpesvirus-2 E10 Gene Product, but Not Its Cellular Homologue, Activates NF-κB Transcription Factor and c-Jun N-terminal Kinase. Journal of Biological Chemistry, 1999, 274, 9962-9968.	3.4	97
101	A Family of Ca2+-Dependent Activator Proteins for Secretion. Journal of Biological Chemistry, 2003, 278, 52802-52809.	3.4	96
102	The Ubx2 and Ubx3 Cofactors Direct Cdc48 Activity to Proteolytic and Nonproteolytic Ubiquitin-Dependent Processes. Current Biology, 2004, 14, 824-828.	3.9	94
103	PRT6/At5g02310 encodes anArabidopsisubiquitin ligase of the N-end rule pathway with arginine specificity and is not theCER3locus. FEBS Letters, 2007, 581, 3189-3196.	2.8	94
104	A SNARE required for retrograde transport to the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9873-9877.	7.1	91
105	Rtt101 and Mms1 in budding yeast form a CUL4 ^{DDB1} â€like ubiquitin ligase that promotes replication through damaged DNA. EMBO Reports, 2008, 9, 1034-1040.	4.5	91
106	Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Molecular and Cellular Neurosciences, 2004, 25, 692-706.	2.2	90
107	The UBAP1 Subunit of ESCRT-I Interacts with Ubiquitin via a SOUBA Domain. Structure, 2012, 20, 414-428.	3.3	88
108	Phylogeny and Function of the Invertebrate p53 Superfamily. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001131-a001131.	5.5	87

#	Article	IF	CITATIONS
109	TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO Journal, 2013, 32, 2848-2860.	7.8	84
110	SVOP, an Evolutionarily Conserved Synaptic Vesicle Protein, Suggests Novel Transport Functions of Synaptic Vesicles. Journal of Neuroscience, 1998, 18, 9269-9281.	3.6	83
111	Apoptosis: Silencing the death receptors. Current Biology, 1999, 9, R381-R384.	3.9	83
112	Direct physical interaction between theCaenorhabditis elegansâ€~death proteins' CED-3 and CED-4. FEBS Letters, 1997, 406, 189-190.	2.8	82
113	A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nature Structural and Molecular Biology, 2015, 22, 959-967.	8.2	82
114	A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. Journal of Molecular Biology, 1998, 282, 195-208.	4.2	81
115	Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and elF3 complexes. BMC Bioinformatics, 2005, 6, 71.	2.6	80
116	PCI complexes: pretty complex interactions in diverse signaling pathways. Trends in Plant Science, 2001, 6, 379-386.	8.8	78
117	Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison. New Phytologist, 2012, 195, 23-31.	7.3	75
118	<i>Arabidopsis</i> PIAL1 and 2 Promote SUMO Chain Formation as E4-Type SUMO Ligases and Are Involved in Stress Responses and Sulfur Metabolism Â. Plant Cell, 2014, 26, 4547-4560.	6.6	73
119	The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12365-12370.	7.1	71
120	A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Research, 2016, 44, 2348-2361.	14.5	69
121	Gene Expression Profiling of Lichen Planus Reflects CXCL9+-Mediated Inflammation and Distinguishes this Disease from Atopic Dermatitis and Psoriasis. Journal of Investigative Dermatology, 2008, 128, 67-78.	0.7	68
122	COP9 signalosome components play a role in the mating pheromone response ofS. cerevisiae. EMBO Reports, 2002, 3, 1215-1221.	4.5	67
123	RNAi-based screening identifies the Mms22L–Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO Journal, 2010, 29, 4210-4222.	7.8	66
124	The protease-associated domain: a homology domain associated with multiple classes of proteases. Trends in Biochemical Sciences, 2001, 26, 147-148.	7.5	64
125	Human Wrnip1 Is Localized in Replication Factories in a Ubiquitin-binding Zinc Finger-dependent Manner. Journal of Biological Chemistry, 2008, 283, 35173-35185.	3.4	60
126	The rsp5-domain is shared by proteins of diverse functions. FEBS Letters, 1995, 358, 153-157.	2.8	59

#	Article	IF	CITATIONS
127	The General Definition of the p97/Valosin-containing Protein (VCP)-interacting Motif (VIM) Delineates a New Family of p97 Cofactors. Journal of Biological Chemistry, 2011, 286, 38670-38678.	3.4	58
128	Nicalin and its binding partner Nomo are novel Nodal signaling antagonists. EMBO Journal, 2004, 23, 3041-3050.	7.8	57
129	Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Nature Communications, 2019, 10, 3678.	12.8	56
130	Sumoylation as a Signal for Polyubiquitylation and Proteasomal Degradation. Sub-Cellular Biochemistry, 2010, 54, 195-214.	2.4	55
131	The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes. International Journal of Biochemistry and Cell Biology, 2003, 35, 706-715.	2.8	54
132	No evidence for PHD fingers as ubiquitin ligases. Trends in Cell Biology, 2003, 13, 285-287.	7.9	53
133	Urm1 at the crossroad of modifications. EMBO Reports, 2008, 9, 1196-1202.	4.5	53
134	Discovery of a Family of Mixed Lineage Kinase Domain-like Proteins in Plants and Their Role in Innate Immune Signaling. Cell Host and Microbe, 2020, 28, 813-824.e6.	11.0	50
135	An Evolutionarily Conserved Autoinhibitory Molecular Switch in ELMO Proteins Regulates Rac Signaling. Current Biology, 2010, 20, 2021-2027.	3.9	49
136	Quod erat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences. Genome Biology, 2001, 2, research0051.1.	9.6	48
137	Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s. Scientific Reports, 2014, 4, 7436.	3.3	47
138	Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Scientific Reports, 2016, 6, 30443.	3.3	46
139	Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO Journal, 2020, 39, e105127.	7.8	46
140	Long-Term Cell Monitoring of Kidney Recipients After an Antilymphocyte Globulin Induction With and Without Steroids. Transplantation, 2007, 83, 712-721.	1.0	42
141	The Yeast E4 Ubiquitin Ligase Ufd2 Interacts with the Ubiquitin-like Domains of Rad23 and Dsk2 via a Novel and Distinct Ubiquitin-like Binding Domain. Journal of Biological Chemistry, 2010, 285, 20390-20398.	3.4	42
142	The frizzled motif: in how many different protein families does it occur?. Trends in Biochemical Sciences, 1998, 23, 415-417.	7.5	41
143	Interaction of Fas(Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS Letters, 1997, 412, 102-106.	2.8	40
144	Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Molecular Biology of the Cell, 2011, 22, 911-920.	2.1	40

#	Article	IF	CITATIONS
145	Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Letters, 2011, 585, 3856-3861.	2.8	39
146	Ubiquitin Receptor Protein UBASH3B Drives Aurora B Recruitment to Mitotic Microtubules. Developmental Cell, 2016, 36, 63-78.	7.0	38
147	Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochemical Journal, 2014, 457, 207-214.	3.7	36
148	Bacterial DUBs: deubiquitination beyond the seven classes. Biochemical Society Transactions, 2019, 47, 1857-1866.	3.4	36
149	Enhanced Dendritic Cell-Induced Immune Responses Mediated by the Novel C-Type Lectin Receptor mDCAR1. Journal of Immunology, 2009, 183, 5069-5078.	0.8	34
150	Linear ubiquitination by <scp>LUBEL</scp> has a role in <i>Drosophila</i> heat stress response. EMBO Reports, 2016, 17, 1624-1640.	4.5	34
151	Molecular Models for the two Discoidin Domains of Human Blood Coagulation Factor V. Journal of Molecular Modeling, 1998, 4, 268-275.	1.8	30
152	Cullin neddylation and substrate-adaptors counteract SCF inhibition by the CAND1-like protein Lag2 in Saccharomyces cerevisiae. EMBO Journal, 2009, 28, 3845-3856.	7.8	30
153	Bioinformatical Detection of Recognition Factors for Ubiquitin and SUMO. Methods in Molecular Biology, 2012, 832, 249-261.	0.9	30
154	The Evolutionary Origins of Programmed Cell Death Signaling. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036442.	5.5	30
155	Human Neutral Amino Acid Transporter ASCT1: Structure of the Gene (SLC1A4) and Localization to Chromosome 2p13-p15. Genomics, 1994, 24, 20-26.	2.9	29
156	The Minimal Deneddylase Core of the COP9 Signalosome Excludes the Csn6 MPNâ^ Domain. PLoS ONE, 2012, 7, e43980.	2.5	29
157	A C. elegans homolog of the Cockayne syndrome complementation group A gene. DNA Repair, 2014, 24, 57-62.	2.8	28
158	Transcriptional profiling identifies an interferonâ€associated host immune response in invasive squamous cell carcinoma of the skin. International Journal of Cancer, 2008, 123, 2605-2615.	5.1	27
159	Bacterial ribosome collision sensing by a MutS DNA repair ATPase paralogue. Nature, 2022, 603, 509-514.	27.8	27
160	Human high affinity, Na+-dependentl-glutamate/l-aspartate transporter GLAST-1 (EAAT-1) : gene structure and localization to chromosome 5p11-p12. FEBS Letters, 1996, 386, 189-193.	2.8	26
161	Reply to Kolesnick and Hannun, and Perry and Hannun. Trends in Biochemical Sciences, 1999, 24, 227.	7.5	26
162	Role of a <i>Candida albicans</i> Nrm1/Whi5 homologue in cell cycle gene expression and DNA replication stress response. Molecular Microbiology, 2012, 84, 778-794.	2.5	25

#	Article	IF	CITATIONS
163	Proteasomal degradation induced by DPP9â€mediated processing competes with mitochondrial protein import. EMBO Journal, 2020, 39, e103889.	7.8	24
164	In vivo13c nuclear magnetic resonance investigations of choline metabolism in rabbit brain. Magnetic Resonance in Medicine, 1990, 13, 90-102.	3.0	22
165	Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2016, 291, 23769-23778.	3.4	22
166	An evolutionary approach to systematic discovery of novel deubiquitinases, applied to <i>Legionella</i> . Life Science Alliance, 2020, 3, e202000838.	2.8	21
167	Searching for FLASH domains. Nature, 1999, 401, 662-662.	27.8	20
168	Mechanism and chain specificity of RNF216/TRIAD3, the ubiquitin ligase mutated in Gordon Holmes syndrome. Human Molecular Genetics, 2019, 28, 2862-2873.	2.9	20
169	A genetic screen for <i>Saccharomyces cerevisiae</i> mutants affecting proteasome function, using a ubiquitinâ€independent substrate. Yeast, 2008, 25, 199-217.	1.7	18
170	UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1. Cell Stress and Chaperones, 2017, 22, 143-154.	2.9	18
171	Isolation of the Schizosaccharomyces pombe Proteasome Subunit Rpn7 and a Structure-Function Study of the Proteasome-COP9-Initiation Factor Domain. Journal of Biological Chemistry, 2007, 282, 32414-32423.	3.4	17
172	Ubiquitin-binding proteins: similar, but different. Essays in Biochemistry, 2005, 41, 49.	4.7	17
173	Function and evolution of the DNA-protein crosslink proteases Wss1 and SPRTN. DNA Repair, 2020, 88, 102822.	2.8	15
174	Ubiquitin-binding proteins: similar, but different. Essays in Biochemistry, 2005, 41, 49-67.	4.7	14
175	Autophagy Competes for a Common Phosphatidylethanolamine Pool with Major Cellular PE-Consuming Pathways in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 199, 475-485.	2.9	13
176	SAMPyling proteins in archaea. Trends in Biochemical Sciences, 2010, 35, 348-351.	7.5	12
177	The Tissue-Specific Rep8/UBXD6 Tethers p97 to the Endoplasmic Reticulum Membrane for Degradation of Misfolded Proteins. PLoS ONE, 2011, 6, e25061.	2.5	12
178	Cln5 represents a new type of cysteine-based <i>S</i> -depalmitoylase linked to neurodegeneration. Science Advances, 2022, 8, eabj8633.	10.3	12
179	Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family. PLoS ONE, 2015, 10, e0143227.	2.5	11
180	Mouse Apolipoprotein AI. cDNA-Derived Primary Structure, Gene Organisation and Complete Nucleotide Sequence. Biological Chemistry Hoppe-Seyler, 1992, 373, 187-194.	1.4	10

#	Article	IF	CITATIONS
181	Human ASPL/TUG interacts with p97 and complements the proteasome mislocalization of a yeast ubx4 mutant, but not the ER-associated degradation defect. BMC Cell Biology, 2014, 15, 31.	3.0	10
182	A structural basis for the diverse linkage specificities within the ZUFSP deubiquitinase family. Nature Communications, 2022, 13, 401.	12.8	10
183	Novel targets for ATM-deficient malignancies. Molecular and Cellular Oncology, 2014, 1, e29905.	0.7	5
184	Ubiquitin-Mimicking Peptides Transfer Differentiates by E1 and E2 Enzymes. BioMed Research International, 2018, 2018, 1-8.	1.9	4
185	Sequence similarity in structurally dissimilar proteins. Current Biology, 2003, 13, R124-R125.	3.9	3
186	Diubiquitin-Based NMR Analysis: Interactions Between Lys6-Linked diUb and UBA Domain of UBXN1. Frontiers in Chemistry, 2019, 7, 921.	3.6	3
187	The GI-UEV Domain, a Catalytically Inactive Ubiquitin-Conjugating Enzyme Variant With a Role in Translational Regulation. Israel Journal of Chemistry, 2006, 46, 183-188.	2.3	2
188	Improved protein-crystal identification by using 2,2,2-trichloroethanol as a fluorescence enhancer. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 307-314.	0.8	2
189	An evolutionarily distinct chaperone promotes 20S proteasome α-ring assembly in plants. Journal of Cell Science, 2020, 133, .	2.0	2
190	Enzyme Bioinformatics. , 0, , 139-162.		1
191	Amino Acid Supply of Aspergillus. Mycology, 2007, , 143-175.	0.5	1
192	Co-translational Polyamine Sensing by Nascent ODC Antizyme. , 2014, , 203-222.		1
193	Protein domains in eukarvotic signal transduction systems 2005		0