
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491724/publications.pdf Version: 2024-02-01

LOÃO PELLISSIER

#	Article	IF	CITATIONS
1	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	10.4	1,224
2	Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 2012, 21, 481-497.	5.8	1,130
3	Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 2012, 87, 111-127.	10.4	717
4	ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40, 774-787.	4.5	703
5	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	27.8	635
6	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	9.5	279
7	Comparing species interaction networks along environmental gradients. Biological Reviews, 2018, 93, 785-800.	10.4	203
8	Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions, 2011, 17, 1122-1131.	4.1	190
9	Climateâ€driven change in plant–insect interactions along elevation gradients. Functional Ecology, 2014, 28, 46-54.	3.6	189
10	Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 2010, 143, 2647-2657.	4.1	187
11	Genetic diversity in caribou linked to past and future climate change. Nature Climate Change, 2014, 4, 132-137.	18.8	154
12	Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 2013, 22, 302-317.	5.8	152
13	The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends in Ecology and Evolution, 2019, 34, 211-223.	8.7	151
14	Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 2010, 33, 1004-1014.	4.5	148
15	Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2012, 2, 1818-1825.	1.9	148
16	Quaternary coral reef refugia preserved fish diversity. Science, 2014, 344, 1016-1019.	12.6	148
17	Improving the prediction of plant species distribution and community composition by adding edaphic to topoâ€climatic variables. Journal of Vegetation Science, 2013, 24, 593-606.	2.2	145
18	Plate tectonics drive tropical reef biodiversity dynamics. Nature Communications, 2016, 7, 11461.	12.8	136

#	Article	IF	CITATIONS
19	Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions, 2016, 18, 345-353.	2.4	127
20	Soil fungal communities of grasslands are environmentally structured at a regional scale in the <scp>A</scp> lps. Molecular Ecology, 2014, 23, 4274-4290.	3.9	125
21	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
22	The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 2013, 22, 52-63.	5.8	121
23	Model complexity affects species distribution projections under climate change. Journal of Biogeography, 2020, 47, 130-142.	3.0	106
24	High elevation <i>Plantago lanceolata</i> plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature?. Ecography, 2014, 37, 950-959.	4.5	105
25	Comparing temperature data sources for use in species distribution models: From inâ€situ logging to remote sensing. Global Ecology and Biogeography, 2019, 28, 1578-1596.	5.8	104
26	Forecasted coral reef decline in marine biodiversity hotspots under climate change. Global Change Biology, 2015, 21, 2479-2487.	9.5	97
27	Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. Journal of Biogeography, 2015, 42, 1255-1266.	3.0	97
28	Global determinants of freshwater and marine fish genetic diversity. Nature Communications, 2020, 11, 692.	12.8	97
29	Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 2010, 211, 351-365.	1.6	95
30	Very high resolution environmental predictors in species distribution models. Progress in Physical Geography, 2014, 38, 79-96.	3.2	95
31	Arctic warming will promote Atlantic–Pacific fishÂinterchange. Nature Climate Change, 2015, 5, 261-265.	18.8	86
32	Predicting present and future intraâ€specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 2012, 15, 649-657.	6.4	79
33	Predicting current and future spatial community patterns of plant functional traits. Ecography, 2013, 36, 1158-1168.	4.5	79
34	The marine fish food web is globally connected. Nature Ecology and Evolution, 2019, 3, 1153-1161.	7.8	76
35	The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. Journal of Ecology, 2016, 104, 1116-1125.	4.0	72
36	Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecology Letters, 2013, 16, 600-608.	6.4	71

#	Article	IF	CITATIONS
37	Communityâ€level plant palatability increases with elevation as insect herbivore abundance declines. Journal of Ecology, 2017, 105, 142-151.	4.0	69
38	The unfolding of plant growth formâ€defence syndromes along elevation gradients. Ecology Letters, 2018, 21, 609-618.	6.4	67
39	The productivity-biodiversity relationship varies across diversity dimensions. Nature Communications, 2019, 10, 5691.	12.8	64
40	Incorporating dominant species as proxies for biotic interactions strengthens plant community models. Journal of Ecology, 2014, 102, 767-775.	4.0	63
41	Global vulnerability of marine mammals to global warming. Scientific Reports, 2020, 10, 548.	3.3	63
42	Spatial and evolutionary predictability of phytochemical diversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
43	Spatial pattern of floral morphology: possible insight into the effects of pollinators on plant distributions. Oikos, 2010, 119, 1805-1813.	2.7	61
44	Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environmental DNA, 2021, 3, 142-156.	5.8	61
45	Thermal niches are more conserved at cold than warm limits in arcticâ€ e lpine plant species. Global Ecology and Biogeography, 2013, 22, 933-941.	5.8	60
46	Linking species diversification to palaeoâ€environmental changes: A processâ€based modelling approach. Global Ecology and Biogeography, 2018, 27, 233-244.	5.8	55
47	gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity. PLoS Biology, 2021, 19, e3001340.	5.6	54
48	Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	54
49	Differential allocation and deployment of direct and indirect defences by <i>Vicia sepium</i> along elevation gradients. Journal of Ecology, 2014, 102, 930-938.	4.0	53
50	Horizontal, but not vertical, biotic interactions affect fineâ€scale plant distribution patterns in a lowâ€energy system. Ecology, 2013, 94, 671-682.	3.2	51
51	Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. Journal of Animal Ecology, 2019, 88, 1522-1533.	2.8	51
52	Novel trophic interactions under climate change promote alpine plant coexistence. Science, 2020, 370, 1469-1473.	12.6	51
53	Combining food web and species distribution models for improved community projections. Ecology and Evolution, 2013, 3, 4572-4583.	1.9	50
54	Phylogenetic alpha and beta diversities of butterfly communities correlate with climate in the western Swiss Alps. Ecography, 2013, 36, 541-550.	4.5	48

#	Article	IF	CITATIONS
55	Past climateâ€ d riven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 2016, 43, 461-470.	3.0	48
56	Transitions in social complexity along elevational gradients reveal a combined impact of season length and development time on social evolution. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140627.	2.6	47
57	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	5.3	46
58	Functional diversity decreases with temperature in high elevation ant fauna. Ecological Entomology, 2013, 38, 364-373.	2.2	44
59	Functional homogenization of bumblebee communities in alpine landscapes under projected climate change. Climate Change Responses, 2014, 1, .	2.6	44
60	The regional species richness and genetic diversity of <scp>A</scp> rctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 2016, 25, 430-442.	5.8	44
61	Climateâ€based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography, 2012, 35, 684-692.	4.5	42
62	Functional Traits 2.0: The power of the metabolome for ecology. Journal of Ecology, 2022, 110, 4-20.	4.0	42
63	Are global hotspots of endemic richness shaped by plate tectonics?. Biological Journal of the Linnean Society, 2018, 123, 247-261.	1.6	41
64	A Minimal Model for the Latitudinal Diversity Gradient Suggests a Dominant Role for Ecological Limits. American Naturalist, 2019, 194, E122-E133.	2.1	41
65	Archived DNA reveals fisheries and climate induced collapse of a major fishery. Scientific Reports, 2015, 5, 15395.	3.3	40
66	Integrating ecosystem services within spatial biodiversity conservation prioritization in the Alps. Ecosystem Services, 2020, 45, 101186.	5.4	40
67	Plant species distributions along environmental gradients: do belowground interactions with fungi matter?. Frontiers in Plant Science, 2013, 4, 500.	3.6	38
68	Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA, 2021, 3, 1113-1127.	5.8	38
69	Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae). Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3662-3669.	2.6	37
70	A quantitative review of abundanceâ \in based species distribution models. Ecography, 2022, 2022, .	4.5	37
71	Biological introduction risks from shipping in a warming <scp>A</scp> rctic. Journal of Applied Ecology, 2016, 53, 340-349.	4.0	36
72	Lineageâ€specific climatic niche drives the tempo of vicariance in the Rand Flora. Journal of Biogeography, 2017, 44, 911-923.	3.0	35

5

#	Article	IF	CITATIONS
73	Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach. Oecologia, 2018, 187, 561-571.	2.0	35
74	eDNA sampled from stream networks correlates with camera trap detection rates of terrestrial mammals. Scientific Reports, 2021, 11, 11362.	3.3	35
75	Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology, 2020, 3, 233.	4.4	34
76	Spatial predictions of landâ€use transitions and associated threats to biodiversity: the case of forest regrowth in mountain grasslands. Applied Vegetation Science, 2013, 16, 227-236.	1.9	31
77	Phylogenetic plant community structure along elevation is lineage specific. Ecology and Evolution, 2013, 3, 4925-4939.	1.9	30
78	Social structure varies with elevation in an Alpine ant. Molecular Ecology, 2015, 24, 498-507.	3.9	30
79	Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding ones. Journal of Plant Ecology, 2010, 3, 243-250.	2.3	29
80	Loss of connectivity among island-dwelling Peary caribou following sea ice decline. Biology Letters, 2016, 12, 20160235.	2.3	29
81	How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs?. Ecology and Evolution, 2021, 11, 14630-14643.	1.9	28
82	Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Science Advances, 2021, 7, .	10.3	27
83	Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients. Journal of Ecology, 2019, 107, 265-278.	4.0	26
84	Linking functional traits and demography to model species-rich communities. Nature Communications, 2021, 12, 2724.	12.8	26
85	Variation in the proportion of flower visitors of <i>Arum maculatum</i> along its distributional range in relation with communityâ€based climatic niche analyses. Oikos, 2011, 120, 728-734.	2.7	25
86	Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities. Environmental Research Letters, 2014, 9, 024016.	5.2	25
87	Uneven rate of plant turnover along elevation in grasslands. Alpine Botany, 2017, 127, 53-63.	2.4	25
88	Use of environmental DNA in assessment of fish functional and phylogenetic diversity. Conservation Biology, 2021, 35, 1944-1956.	4.7	25
89	Growthâ€competitionâ€herbivore resistance tradeâ€offs and the responses of alpine plant communities to climate change. Functional Ecology, 2018, 32, 1693-1703.	3.6	24
90	Mountain building, climate cooling and the richness of coldâ€adapted plants in the Northern Hemisphere. Journal of Biogeography, 2019, 46, 1792-1807.	3.0	24

#	Article	IF	CITATIONS
91	Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landscape Ecology, 2021, 36, 89-104.	4.2	24
92	Clobal plantâ€frugivore trait matching is shaped by climate and biogeographic history. Ecology Letters, 2022, 25, 686-696.	6.4	24
93	Diversification of the cold-adapted butterfly genus Oeneis related to Holarctic biogeography and climatic niche shifts. Molecular Phylogenetics and Evolution, 2015, 92, 255-265.	2.7	23
94	Plant physical and chemical traits associated with herbivory in situ and under a warming treatment. Journal of Ecology, 2020, 108, 733-749.	4.0	23
95	Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nature Communications, 2020, 11, 4663.	12.8	23
96	Phylogenetic relatedness and proboscis length contribute to structuring bumblebee communities in the extremes of abiotic and biotic gradients. Global Ecology and Biogeography, 2013, 22, 577-585.	5.8	22
97	Forecasted homogenization of high Arctic vegetation communities under climate change. Journal of Biogeography, 2018, 45, 2576-2587.	3.0	22
98	Loss of interactions with ants under cold climate in a regional myrmecophilous butterfly fauna. Journal of Biogeography, 2012, 39, 1782-1790.	3.0	21
99	Multiple refugia and barriers explain the phylogeography of the Valais shrew, Sorex antinorii (Mammalia: Soricomorpha). Biological Journal of the Linnean Society, 2012, 105, 864-880.	1.6	21
100	Simulated shifts in trophic niche breadth modulate range loss of alpine butterflies under climate change. Ecography, 2016, 39, 796-804.	4.5	21
101	Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus <i>Pyrgus</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170208.	2.6	21
102	Improving spatial predictions of taxonomic, functional and phylogenetic diversity. Journal of Ecology, 2018, 106, 76-86.	4.0	21
103	A tale of two forests: ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Annals of Botany, 2018, 122, 1005-1017.	2.9	21
104	Morphological, ecological and genetic aspects associated with endemism in the <scp>F</scp> ly <scp>O</scp> rchid group. Molecular Ecology, 2013, 22, 1431-1446.	3.9	20
105	A probabilistic approach to nicheâ€based community models for spatial forecasts of assemblage properties and their uncertainties. Journal of Biogeography, 2013, 40, 1939-1946.	3.0	20
106	Historical and contemporary determinants of global phylogenetic structure in tropical reef fish faunas. Ecography, 2016, 39, 825-835.	4.5	20
107	Density-based hierarchical clustering of pyro-sequences on a large scale—the case of fungal ITS1. Bioinformatics, 2013, 29, 1268-1274.	4.1	19
108	Reptile species richness associated to ecological and historical variables in Iran. Scientific Reports, 2020. 10. 18167.	3.3	19

#	Article	IF	CITATIONS
109	How wild bees find a way in European cities: Pollen metabarcoding unravels multiple feeding strategies and their effects on distribution patterns in four wild bee species. Journal of Applied Ecology, 2022, 59, 457-470.	4.0	19
110	Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (<i>Asclepias</i> spp.). New Phytologist, 2016, 209, 1230-1239.	7.3	18
111	Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica, 2021, 53, 1606-1619.	1.6	18
112	Molecular substitution rate increases in myrmecophilous lycaenid butterflies (Lepidoptera). Zoologica Scripta, 2012, 41, 651-658.	1.7	17
113	Plant functional and phylogenetic turnover correlate with climate and land use in the Western Swiss Alps. Journal of Plant Ecology, 2014, 7, 439-450.	2.3	17
114	Spatial imprints of plate tectonics on extant richness of terrestrial vertebrates. Journal of Biogeography, 2017, 44, 1185-1197.	3.0	17
115	Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191506.	2.6	17
116	Applying predictive models to study the ecological properties of urban ecosystems: A case study in ZA¼rich, Switzerland. Landscape and Urban Planning, 2021, 214, 104137.	7.5	17
117	Adaptive colour polymorphism of Acrida ungarica H. (Orthoptera: Acrididae) in a spatially heterogeneous environment. Acta Oecologica, 2011, 37, 93-98.	1.1	16
118	Cross-scale effects of land use on the functional composition of herbivorous insect communities. Landscape Ecology, 2019, 34, 2001-2015.	4.2	16
119	Climate and land-use changes reshuffle politically-weighted priority areas of mountain biodiversity. Global Ecology and Conservation, 2019, 17, e00589.	2.1	16
120	Suitability, success and sinks: how do predictions of nesting distributions relate to fitness parameters in high arctic waders?. Diversity and Distributions, 2013, 19, 1496-1505.	4.1	15
121	Responses of coral reef fishes to past climate changes are related to lifeâ€history traits. Ecology and Evolution, 2017, 7, 1996-2005.	1.9	15
122	Linking genetic and ecological differentiation in an ungulate with a circumpolar distribution. Ecography, 2018, 41, 922-937.	4.5	15
123	The structure of plant–herbivore interaction networks varies along elevational gradients in the European Alps. Journal of Biogeography, 2021, 48, 465-476.	3.0	15
124	Differential phenotypic and genetic expression of defence compounds in a plant–herbivore interaction along elevation. Royal Society Open Science, 2016, 3, 160226.	2.4	14
125	Detection of the elusive Dwarf sperm whale (<i>Kogia sima</i>) using environmental DNA at Malpelo island (Eastern Pacific, Colombia). Ecology and Evolution, 2021, 11, 2956-2962.	1.9	14
126	Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220162.	2.6	14

#	Article	IF	CITATIONS
127	Temporally dynamic habitat suitability predicts genetic relatedness among caribou. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140502.	2.6	13
128	Dispersal Dynamics in Food Webs. American Naturalist, 2015, 185, 157-168.	2.1	13
129	Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices. Applied and Environmental Microbiology, 2016, 82, 2121-2131.	3.1	13
130	Species pool distributions along functional trade-offs shape plant productivity–diversity relationships. Scientific Reports, 2017, 7, 15405.	3.3	13
131	The functional decoupling of processes in alpine ecosystems under climate change. Current Opinion in Insect Science, 2018, 29, 126-132.	4.4	13
132	A processâ€based model supports an association between dispersal and the prevalence of species traits in tropical reef fish assemblages. Ecography, 2019, 42, 2095-2106.	4.5	13
133	Forecast increase in invasive rabbit spread into ecosystems of an oceanic island (Tenerife) under climate change. Ecological Applications, 2021, 31, e02206.	3.8	13
134	How can global conventions for biodiversity and ecosystem services guide local conservation actions?. Current Opinion in Environmental Sustainability, 2017, 29, 145-150.	6.3	12
135	Patterns of taxonomic and functional diversity in the global cleaner reef fish fauna. Journal of Biogeography, 2021, 48, 2469-2485.	3.0	12
136	Greater topoclimatic control of above―versus belowâ€ground communities. Global Change Biology, 2020, 26, 6715-6728.	9.5	11
137	Assessing potential landscape service trade-offs driven by urbanization in Switzerland. Palgrave Communications, 2019, 5, .	4.7	11
138	Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere, 2021, 12, e03791.	2.2	11
139	Landscape selection by migratory geese: implications for hunting organisation. Wildlife Biology, 2017, 2017, 1-12.	1.4	10
140	Combining modelling tools to evaluate a goose management scheme. Ambio, 2017, 46, 210-223.	5.5	10
141	Inflection point in climatic suitability of insect pest species in Europe suggests nonâ€linear responses to climate change. Global Change Biology, 2020, 26, 6338-6349.	9.5	10
142	Harnessing paleoâ€environmental modeling and genetic data to predict intraspecific genetic structure. Evolutionary Applications, 2020, 13, 1526-1542.	3.1	10
143	The effect of communityâ€wide phytochemical diversity on herbivory reverses from low to high elevation. Journal of Ecology, 2022, 110, 46-56.	4.0	10
144	Low spatial autocorrelation in mountain biodiversity data and model residuals. Ecosphere, 2021, 12, e03403.	2.2	10

LOÃ⁻C Pellissier

#	Article	IF	CITATIONS
145	Evaluating bioinformatics pipelines for populationâ€level inference using environmental DNA. Environmental DNA, 2022, 4, 674-686.	5.8	10
146	Ecological niche overlap in sister species: how do oil-collecting bees Macropis europaea and Macropis fulvipes (Hymenoptera: Melittidae) avoid hybridization and competition?. Apidologie, 2011, 42, 579-595.	2.0	9
147	Pollinators as drivers of plant distribution and assemblage into communities. , 2011, , 392-413.		8
148	Comparing spatial diversification and meta-population models in the Indo-Australian Archipelago. Royal Society Open Science, 2018, 5, 171366.	2.4	8
149	Contrasting responses of above- and below-ground herbivore communities along elevation. Oecologia, 2020, 194, 515-528.	2.0	8
150	A landscapeâ€scale assessment of the relationship between grassland functioning, community diversity, and functional traits. Ecology and Evolution, 2020, 10, 9906-9919.	1.9	8
151	An integrated highâ€resolution mapping shows congruent biodiversity patterns of Fagales and Pinales. New Phytologist, 2022, 235, 759-772.	7.3	7
152	High Rate of Protein Coding Sequence Evolution and Species Diversification in the Lycaenids. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	6
153	Marine fish diversity in Tropical America associated with both past and present environmental conditions. Journal of Biogeography, 2020, 47, 2597-2610.	3.0	6
154	Coral reef fishes reveal strong divergence in the prevalence of traits along the global diversity gradient. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211712.	2.6	6
155	Disentangling the components of coastal fish biodiversity in southern Brittany by applying an environmental <scp>DNA</scp> approach. Environmental DNA, 2022, 4, 920-939.	5.8	6
156	Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of Cardamine Species Along Elevational Gradients. Journal of Chemical Ecology, 2019, 45, 638-648.	1.8	5
157	Consistency of spatioâ€ŧemporal patterns of avian migration across the Swiss lowlands. Remote Sensing in Ecology and Conservation, 2020, 6, 198-211.	4.3	5
158	Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes. Scientific Reports, 2021, 11, 20731.	3.3	4
159	Area, isolation and climate explain the diversity of mammals on islands worldwide. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211879.	2.6	4
160	Species ecology explains the spatial components of genetic diversity in tropical reef fishes. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211574.	2.6	3
161	Dispersal and habitat dynamics shape the genetic structure of the Northern chamois in the Alps. Journal of Biogeography, 2022, 49, 1848-1861.	3.0	3
162	Eco-evolutionary model on spatial graphs reveals how habitat structure affects phenotypic differentiation. Communications Biology, 2022, 5, .	4.4	3

LOÃ⁻C Pellissier

#	Article	IF	CITATIONS
163	<scp>DNA</scp> â€based networks reveal the ecological determinants of plant–herbivore interactions along environmental gradients. Molecular Ecology, 2023, 32, 6436-6448.	3.9	2
164	Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Scientific Reports, 2022, 12, .	3.3	2
165	Wild bee larval food composition in five European cities. Ecology, 2022, , e3740.	3.2	1
166	A Comparison of Climatic Niches of the Same Alpine Plant Species in the Central Caucasus and the Alps. Geobotany Studies, 2017, , 133-144.	0.2	0
167	Similar trait structure and vulnerability in pelagic fish faunas on two remote island systems. Marine Biology, 2022, 169, 1.	1.5	0
168	Tracking sucking herbivory with nitrogen isotope labelling: Lessons from an individual trait-based approach. Basic and Applied Ecology, 2022, 63, 104-114.	2.7	0