
Narendra Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/349141/publications.pdf Version: 2024-02-01

Νασένισα Κιιμάσ

#	Article	IF	CITATIONS
1	Mucosal Epithelial Jak Kinases in Health and Diseases. Mediators of Inflammation, 2021, 2021, 1-17.	3.0	11
2	Drug-induced liver injury and prospect of cytokine based therapy; A focus on IL-2 based therapies. Life Sciences, 2021, 278, 119544.	4.3	15
3	Experimental and kinetic study of removal of lead (Pb+2) from battery effluent using sweet lemon (Citrus limetta) peel biochar adsorbent. Environment, Development and Sustainability, 2020, 22, 4379-4406.	5.0	15
4	Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity. Journal of Biological Chemistry, 2019, 294, 18337-18348.	3.4	16
5	Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Applied Water Science, 2018, 8, 1.	5.6	50
6	Janus kinase 3 regulates adherens junctions and epithelial mesenchymal transition through β-catenin. Journal of Biological Chemistry, 2017, 292, 16406-16419.	3.4	15
7	Role of Janus Kinase 3 in Predisposition to Obesity-associated Metabolic Syndrome. Journal of Biological Chemistry, 2015, 290, 29301-29312.	3.4	28
8	Structure and Function of Jak3- SH2 Domain. , 2015, , 209-227.		0
9	Adapter Protein Shc Regulates Janus Kinase 3 Phosphorylation. Journal of Biological Chemistry, 2014, 289, 15951-15956.	3.4	11
10	Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Critical Reviews in Oncology/Hematology, 2013, 86, 232-250.	4.4	144
11	Role of Janus Kinase 3 in Mucosal Differentiation and Predisposition to Colitis. Journal of Biological Chemistry, 2013, 288, 31795-31806.	3.4	32
12	Molecular mechanism of interleukin-2-induced mucosal homeostasis. American Journal of Physiology - Cell Physiology, 2012, 302, C735-C747.	4.6	34
13	Identification of Molecular Switch Regulating Interactions of Janus Kinase 3 with Cytoskeletal Proteins. Journal of Biological Chemistry, 2012, 287, 41386-41391.	3.4	22
14	Changes in Jak3 Expression during the Differentiation of Intestinal epithelial cells*. FASEB Journal, 2009, 23, 871.9.	0.5	0
15	Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier. American Journal of Physiology - Cell Physiology, 2008, 295, C440-C450.	4.6	127
16	Janus Kinase 3 Regulates Interleukin 2-induced Mucosal Wound Repair through Tyrosine Phosphorylation of Villin. Journal of Biological Chemistry, 2007, 282, 30341-30345.	3.4	42
17	Association of Villin with Phosphatidylinositol 4,5-Bisphosphate Regulates the Actin Cytoskeleton. Journal of Biological Chemistry, 2004, 279, 3096-3110.	3.4	71
18	Identification of a Functional Switch for Actin Severing by Cytoskeletal Proteins. Journal of Biological Chemistry, 2004, 279, 24915-24918.	3.4	38

NARENDRA KUMAR

#	Article	IF	CITATIONS
19	Functional Dissection and Molecular Characterization of Calcium-sensitive Actin-capping and Actin-depolymerizing Sites in Villin. Journal of Biological Chemistry, 2004, 279, 45036-45046.	3.4	33
20	Regulation of Cell Motility by Tyrosine Phosphorylated Villin. Molecular Biology of the Cell, 2004, 15, 4807-4817.	2.1	43
21	Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08. Biochemical and Biophysical Research Communications, 2004, 324, 679-685.	2.1	48
22	Regulation of Actin Dynamics by Tyrosine Phosphorylation:Â Identification of Tyrosine Phosphorylation Sites within the Actin-Severing Domain of Villinâ€. Biochemistry, 2002, 41, 11750-11760.	2.5	26
23	Simulation and modeling of continuous H2 production process by Enterobacter cloacae IIT-BT 08 using different bioreactor configuration. Enzyme and Microbial Technology, 2002, 31, 867-875.	3.2	13
24	Electron microscopy of hydrogen producing immobilized E. cloacae IIT-BT 08 on natural polymers. International Journal of Hydrogen Energy, 2001, 26, 1155-1163.	7.1	13
25	Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology, 2001, 29, 280-287.	3.2	264
26	Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnology Letters, 2001, 23, 537-541.	2.2	78
27	Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 2000, 35, 589-593.	3.7	333
28	Adriamycin analogues. Preparation of 7-O-(d-ribofuranosyl)-daunomycinone and -adriamycinone. Carbohydrate Research, 1986, 153, 171-180.	2.3	2
29	Adriamycin analogues. Synthesis of the α and β anomers of 7-O-(3-amino-3,5-dideoxy-D-ribofuranosyl)adriamycinone and some related compounds. Canadian Journal of Chemistry, 1984, 62, 2585-2591.	1.1	1