Yun Seog Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491389/publications.pdf Version: 2024-02-01

VUN SEOCLEE

#	Article	IF	CITATIONS
1	Vaporâ€Transportâ€Deposited Orthorhombicâ€&nSe Thin Films: A Potential Costâ€Effective Absorber Material for Solarâ€Cell Applications. Solar Rrl, 2022, 6, 2100676.	5.8	10
2	Investigation of Defectâ€Tolerant Perovskite Solar Cells with Longâ€Term Stability via Controlling the Selfâ€Doping Effect. Advanced Energy Materials, 2021, 11, 2100555.	19.5	38
3	Scalable High-Efficiency Bi-Facial Solar Evaporator with a Dendritic Copper Oxide Wick. ACS Applied Materials & Interfaces, 2021, 13, 11869-11878.	8.0	16
4	Confined Growth of High-quality Single-Crystal MAPbBr3 by Inverse Temperature Crystallization for Photovoltaic Applications. Electronic Materials Letters, 2021, 17, 347-354.	2.2	12
5	Interfacial Solar EvaporatorÂ- Physical Principles and Fabrication Methods. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1347-1367.	4.9	16
6	Elucidating Ionic Programming Dynamics of Metalâ€Oxide Electrochemical Memory for Neuromorphic Computing. Advanced Electronic Materials, 2021, 7, 2100185.	5.1	20
7	Semitransparent Perovskite Solar Cells with Enhanced Light Utilization Efficiencies by Transferable Ag Nanogrid Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 58475-58485.	8.0	9
8	Fundamentals, impedance, and performance of solid-state Li-metal microbatteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033212.	2.1	3
9	Carrier-resolved photo-Hall effect. Nature, 2019, 575, 151-155.	27.8	66
10	Vapor transport deposited tin monosulfide for thin-film solar cells: effect of deposition temperature and duration. Journal of Materials Chemistry A, 2019, 7, 7186-7193.	10.3	35
11	Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180, 350-357.	6.2	60
12	Compositional effects in Ag2ZnSnSe4 thin films and photovoltaic devices. Acta Materialia, 2017, 126, 383-388.	7.9	25
13	Industrial perspectives on earth abundant, multinary thin film photovoltaics. Semiconductor Science and Technology, 2017, 32, 033004.	2.0	31
14	Unconventional kesterites: The quest to reduce band tailing in CZTSSe. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 29-36.	5.9	29
15	Determining interface properties limiting open-circuit voltage in heterojunction solar cells. Journal of Applied Physics, 2017, 121, .	2.5	24
16	Back Contact Engineering for Increased Performance in Kesterite Solar Cells. Advanced Energy Materials, 2017, 7, 1602585.	19.5	54
17	Preparation of single-phase SnSe thin-films and modification of electrical properties via stoichiometry control for photovoltaic application. Journal of Alloys and Compounds, 2017, 722, 474-481.	5.5	50
18	Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4082-4086.	7.1	34

Yun Seog Lee

#	Article	IF	CITATIONS
19	Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications, 2017, 8, 682.	12.8	94
20	Record Efficiencies for Selenium Photovoltaics and Application to Indoor Solar Cells. , 2017, , .		5
21	Atomicâ€Scale Observation of Oxygen Substitution and Its Correlation with Holeâ€Transport Barriers in Cu ₂ ZnSnSe ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2016, 6, 1501902.	19.5	56
22	Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics. Journal of Chemical Physics, 2016, 144, 104704.	3.0	86
23	Optimization of Silver-alloying for improved photovoltaic properties of CZTSSe. , 2016, , .		0
24	Effects of Postsynthesis Thermal Conditions on Methylammonium Lead Halide Perovskite: Band Bending at Grain Boundaries and Its Impacts on Solar Cell Performance. Journal of Physical Chemistry C, 2016, 120, 21330-21335.	3.1	25
25	Photovoltaic Device with over 5% Efficiency Based on an nâ€Type Ag ₂ ZnSnSe ₄ Absorber. Advanced Energy Materials, 2016, 6, 1601182.	19.5	102
26	Photovoltaic Materials and Devices Based on the Alloyed Kesterite Absorber (Ag <i>_x</i> Cu _{1–} <i>_x</i>) ₂ ZnSnSe ₄ . Advanced Energy Materials, 2016, 6, 1502468.	19.5	226
27	Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu ₂ ZnSn(S,Se) ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2016, 6, 1600198.	19.5	75
28	Chemical Consequences of Alkali Inhomogeneity in Cu ₂ ZnSnS ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1500922.	19.5	13
29	Monolithic Perovskiteâ€CIGS Tandem Solar Cells via In Situ Band Gap Engineering. Advanced Energy Materials, 2015, 5, 1500799.	19.5	219
30	Flexible kesterite solar cells on ceramic substrates for advanced thermal processing. , 2015, , .		3
31	10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nature Communications, 2015, 6, 6391.	12.8	45
32	The impact of sodium on the sub-bandgap states in CZTSe and CZTS. Applied Physics Letters, 2015, 106, .	3.3	51
33	Two-Step Annealing Study of Cuprous Oxide for Photovoltaic Applications. IEEE Journal of Photovoltaics, 2015, 5, 1476-1481.	2.5	5
34	Phase transition-induced band edge engineering of BiVO ₄ to split pure water under visible light. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13774-13778.	7.1	116
35	Cu ₂ ZnSnSe ₄ Thinâ€Film Solar Cells by Thermal Coâ€evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length. Advanced Energy Materials, 2015, 5, 1401372.	19.5	408

36 Solar Cells: High Efficiency Cu2ZnSn(S,Se)4Solar Cells by Applying a Double In2S3/CdS Emitter (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

Yun Seog Lee

#	Article	IF	CITATIONS
37	Band offsets of <i>n</i> -type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics. Applied Physics Letters, 2014, 105, .	3.3	96
38	X-ray absorption spectroscopy elucidates the impact of structural disorder on electron mobility in amorphous zinc-tin-oxide thin films. Applied Physics Letters, 2014, 104, .	3.3	19
39	Phase-pure evaporation of tin (II) sulfide for solar cell applications. , 2014, , .		0
40	Improved Cu ₂ Oâ€Based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the pâ€n Junction. Advanced Energy Materials, 2014, 4, 1301916.	19.5	142
41	3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation. Advanced Materials, 2014, 26, 7488-7492.	21.0	227
42	Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open ircuit Voltage in Cuprous Oxide Solar Cells. Advanced Materials, 2014, 26, 4704-4710.	21.0	242
43	High Efficiency Cu ₂ ZnSn(S,Se) ₄ Solar Cells by Applying a Double In ₂ S ₃ /CdS Emitter. Advanced Materials, 2014, 26, 7427-7431.	21.0	400
44	Textured conducting glass by nanosphere lithography for increased light absorption in thin-film solar cells. Journal Physics D: Applied Physics, 2014, 47, 085105.	2.8	13
45	Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells. Journal of Materials Chemistry A, 2013, 1, 15416.	10.3	108
46	Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy and Environmental Science, 2013, 6, 2112.	30.8	160
47	Low-resistance earth-abundant metal contacts to nitrogen-doped cuprous oxide thin films. , 2012, , .		1
48	Growth and p-type doping of cuprous oxide thin-films for photovoltaic applications. , 2012, , .		2
49	Low contact resistivity of metals on nitrogen-doped cuprous oxide (Cu2O) thin-films. Journal of Applied Physics, 2012, 112, .	2.5	19
50	High Photocurrent in Silicon Photoanodes Catalyzed by Iron Oxide Thin Films for Water Oxidation. Angewandte Chemie - International Edition, 2012, 51, 423-427.	13.8	75
51	Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Applied Physics Letters, 2011, 98, .	3.3	120
52	Earth abundant materials for high efficiency heterojunction thin film solar cells. , 2009, , .		11
53	Evolution of metal impurities during crystalline silicon solar cell processing. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0