Krisztian Magori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies. PLoS Neglected Tropical Diseases, 2009, 3, e508.	1.3	141
2	Regional Differences in the Association Between Land Cover and West Nile Virus Disease Incidence in Humans in the United States. American Journal of Tropical Medicine and Hygiene, 2011, 84, 234-238.	0.6	84
3	A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes, 2017, 8, 561-573.	4.3	79
4	Spread of white-nose syndrome on a network regulated by geography and climate. Nature Communications, 2012, 3, 1306.	5.8	76
5	Genetically Engineered Underdominance for Manipulation of Pest Populations: A Deterministic Model. Genetics, 2006, 172, 2613-2620.	1.2	68
6	INTRODUCING DESIRABLE TRANSGENES INTO INSECT POPULATIONS USING Y-LINKED MEIOTIC DRIVE?A THEORETICAL ASSESSMENT. Evolution; International Journal of Organic Evolution, 2007, 61, 717-726.	1.1	39
7	The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. Annals of Translational Medicine, 2017, 5, 145-145.	0.7	29
8	Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks. Microbiome, 2017, 5, 133.	4.9	27
9	Introducing transgenes into insect populations using combined gene-drive strategies: Modeling and analysis. Insect Biochemistry and Molecular Biology, 2007, 37, 1054-1063.	1.2	24
10	Impact of Herbivore-induced Plant Volatiles on Parasitoid Foraging Success: A Spatial Simulation of the Cotesia rubecula, Pieris rapae, and Brassica oleracea System. Journal of Chemical Ecology, 2008, 34, 959-970.	0.9	24
11	Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations. PLoS ONE, 2011, 6, e22701.	1.1	24
12	Genetic Strategies for Controlling Mosquito-Borne Diseases. American Scientist, 2006, 94, 238.	0.1	18
13	Decelerating Spread of West Nile Virus by Percolation in a Heterogeneous Urban Landscape. PLoS Computational Biology, 2011, 7, e1002104.	1.5	16
14	Ecological and inhost factors promoting distinct parasite life-history strategies in Lyme borreliosis. Epidemics, 2012, 4, 152-157.	1.5	15
15	WETLAND COVER DYNAMICS DRIVE HEMORRHAGIC DISEASE PATTERNS IN WHITE-TAILED DEER IN THE UNITED STATES. Journal of Wildlife Diseases, 2013, 49, 501-509.	0.3	14
16	When More Transmission Equals Less Disease: Reconciling the Disconnect between Disease Hotspots and Parasite Transmission. PLoS ONE, 2013, 8, e61501.	1.1	11
17	Genetic Strategies for Controlling Mosquito-Borne Diseases. American Scientist, 2006, 94, 238.	0.1	6
18	Behavioral characteristics and endosymbionts of two potential tularemia and Rocky Mountain spotted fever tick vectors. Journal of Vector Ecology, 2020, 45, 321-332.	0.5	4

#	Article	IF	CITATIONS
19	The evolutionary consequences of alternative types of imperfect vaccines. Journal of Mathematical Biology, 2014, 68, 969-987.	0.8	3
20	Ameliorating Impact of Prophylactic Intranasal Oxytocin on Signs of Fear in a Rat Model of Traumatic Stress. Frontiers in Behavioral Neuroscience, 2018, 12, 105.	1.0	3
21	Short Term Prediction ofCulex quinquefasciatusPopulation Carrying West Nile Virus in Central North Georgia, U.S.A., Based on the Climate Variability. , 2015, , .		0
22	Short-term prediction of Culex quinquefasciatus abundance in Central North Georgia, USA, based on the meteorological variability. Neural Computing and Applications, 0, , 1.	3.2	0