Naonobu Katada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491135/publications.pdf Version: 2024-02-01

		101543	123424
140	4,414	36	61
papers	citations	h-index	g-index
143	143	143	3329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium. Journal of Physical Chemistry B, 1997, 101, 5969-5977.	2.6	374
2	Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catalysis Surveys From Asia, 1997, 1, 215-226.	1.2	181
3	Temperature-Programmed Desorption of Ammonia with Readsorption Based on the Derived Theoretical Equation. The Journal of Physical Chemistry, 1995, 99, 8812-8816.	2.9	172
4	New Method for the Temperature- Programmed Desorption (TPD) of Ammonia Experiment for Characterization of Zeolite Acidity: A Review. Chemical Record, 2013, 13, 432-455.	5.8	156
5	Complete oxidation of methane on supported palladium catalyst: Support effect. Applied Catalysis A: General, 1996, 134, 203-215.	4.3	131
6	Superacidity and Catalytic Activity of Sulfated Zirconia. Journal of Physical Chemistry B, 2000, 104, 10321-10328.	2.6	125
7	Correlation between BrÃ,nsted Acid Strength and Local Structure in Zeolites. Journal of Physical Chemistry C, 2009, 113, 19208-19217.	3.1	122
8	Tungsten Oxide Monolayer Loaded on Zirconia:  Determination of Acidity Generated on the Monolayer. Journal of Physical Chemistry B, 1999, 103, 7206-7213.	2.6	113
9	Ammonia IRMS-TPD Study on the Distribution of Acid Sites in Mordenite. Journal of Physical Chemistry B, 2005, 109, 18749-18757.	2.6	112
10	Acidity of β zeolite with different Si/Al2 ratio as measured by temperature programmed desorption of ammonia. Microporous and Mesoporous Materials, 2000, 40, 271-281.	4.4	109
11	IRMS-TPD of ammonia: Direct and individual measurement of BrÃ,nsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 2007, 250, 151-160.	6.2	105
12	Thin silica layer on alumina: evidence of the acidity in the monolayer. The Journal of Physical Chemistry, 1990, 94, 6441-6445.	2.9	94
13	Analysis of Acidic Properties of Zeolitic and Non-Zeolitic Solid Acid Catalysts Using Temperature-Programmed Desorption of Ammonia. Catalysis Surveys From Asia, 2004, 8, 161-170.	2.6	84
14	Combined study of IRMS-TPD measurement and DFT calculation on BrÃ,nsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. Journal of Catalysis, 2008, 259, 203-210.	6.2	81
15	IRMS–TPD of ammonia for characterization of acid site in β-zeolite. Microporous and Mesoporous Materials, 2005, 82, 105-112.	4.4	72
16	Acidic Property of MFI-Type Gallosilicate Determined by Temperature-Programmed Desorption of Ammonia. Journal of Physical Chemistry B, 1998, 102, 6738-6745.	2.6	70
17	Identification and Measurements of Strong BrÃ,nsted Acid Site in Ultrastable Y (USY) Zeolite. Journal of Physical Chemistry B, 2006, 110, 264-269.	2.6	66
18	Innovation of catalytic technology for upgrading of crude oil in petroleum refinery. Fuel Processing Technology, 2020, 208, 106518.	7.2	58

Naonobu Katada

#	Article	IF	CITATIONS
19	Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. Journal of Physical Chemistry C, 2007, 111, 894-900.	3.1	54
20	Biodiesel production using heteropoly acid-derived solid acid catalyst H4PNbW11O40/WO3–Nb2O5. Applied Catalysis A: General, 2009, 363, 164-168.	4.3	53
21	Correlation of the cracking activity with solid acidity and adsorption property on zeolites. Applied Catalysis A: General, 2010, 373, 208-213.	4.3	52
22	Acidic Property of Y- and Mordenite-Type Zeolites with High Aluminum Concentration under Dry Conditions. Journal of Physical Chemistry B, 2000, 104, 7561-7564.	2.6	51
23	Ammonia IRMS-TPD measurements and DFT calculation on acidic hydroxyl groups in CHA-type zeolites. Physical Chemistry Chemical Physics, 2007, 9, 5980.	2.8	51
24	Additional acid site on HZSM-5 treated with basic and acidic solutions as detected by temperature-programmed desorption of ammonia. Microporous and Mesoporous Materials, 2003, 66, 283-296.	4.4	48
25	Analysis of Toluene Adsorption on Na-Form Zeolite with a Temperature-Programmed Desorption Method. Journal of Physical Chemistry C, 2007, 111, 1474-1479.	3.1	47
26	Strong BrÃ,nsted acid site in HZSM-5 created by mild steaming. Catalysis Today, 2012, 185, 17-24.	4.4	46
27	Detection of active sites for paraffin cracking on USY zeolite by 27Al MQMAS NMR operated at high magnetic field 16 T. Journal of Molecular Catalysis A, 2005, 236, 239-245.	4.8	43
28	Strong Acidity of MFI-Type Ferrisilicate Determined by Temperature-Programmed Desorption of Ammonia. Journal of Physical Chemistry B, 2000, 104, 5511-5518.	2.6	42
29	Solid acidity of metal oxide monolayer and its role in catalytic reactions. Catalysis Today, 2003, 87, 213-218.	4.4	42
30	Mechanism of Growth of Silica Monolayer and Generation of Acidity by Chemical Vapor Deposition of Tetramethoxysilane on Alumina. The Journal of Physical Chemistry, 1994, 98, 7647-7652.	2.9	41
31	Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst. Microporous and Mesoporous Materials, 2017, 242, 118-126.	4.4	41
32	Silica Monolayer Solid-Acid Catalyst Prepared by CVD. Chemical Vapor Deposition, 1996, 2, 125-134.	1.3	40
33	Measurements of number and strength distribution of BrÃ,nsted and Lewis acid sites on sulfated zirconia by ammonia IRMS–TPD method. Applied Catalysis A: General, 2008, 340, 76-86.	4.3	40
34	Characterization and Design of Zeolite Catalysts. Springer Series in Materials Science, 2010, , .	0.6	40
35	Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. Journal of Physical Chemistry C, 2011, 115, 22505-22513.	3.1	40
36	A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena–alumina catalyst. Part 1. Surface area of alumina. Applied Catalysis A: General, 1998, 170, 315-328.	4.3	38

#	Article	IF	CITATIONS
37	Periodic Density Functional Calculation on the BrÃ,nsted Acidity of Modified Y-Type Zeolite. Journal of Physical Chemistry C, 2009, 113, 5672-5680.	3.1	38
38	Dependence of cracking activity on the BrÃ,nsted acidity of Y zeolite: DFT study and experimental confirmation. Catalysis Science and Technology, 2013, 3, 1919.	4.1	35
39	Effect of preparation conditions on platinum metal dispersion and turnover frequency of several reactions over platinum-supported on alumina catalysts. Applied Catalysis A: General, 2004, 272, 329-338.	4.3	34
40	Novel supporting materials of lipase PS suitable for use in an ionic liquid solvent system. Green Chemistry, 2003, 5, 494-496.	9.0	33
41	Molecular Shape Recognition by a Tin Oxide Chemical Sensor Coated with a Silica Overlayer Precisely Designed Using an Organic Molecule as the Template. Langmuir, 2000, 16, 3858-3865.	3.5	31
42	Relationship between activation energy and pre-exponential factor normalized by the number of BrĄ̃nsted acid sites in cracking of short chain alkanes on zeolites. Catalysis Science and Technology, 2015, 5, 1864-1869.	4.1	31
43	Synthesis of aniline from phenol and ammonia over zeolite beta. Studies in Surface Science and Catalysis, 1997, 105, 1227-1234.	1.5	30
44	Computational Study of BrÃ,nsted Acidity of Faujasite. Effect of the Al Content on the Infrared OH Stretching Frequencies. Journal of Physical Chemistry C, 2008, 112, 19293-19301.	3.1	30
45	Ammonia IRMS-TPD measurements on BrÃ,nsted acidity of proton-formed SAPO-34. Physical Chemistry Chemical Physics, 2011, 13, 3311-3318.	2.8	30
46	Title is missing!. Catalysis Letters, 2002, 80, 47-51.	2.6	29
47	Catalytic activity and solid acidity of vanadium oxide thin layer loaded on TiO2, ZrO2, and SnO2. Catalysis Today, 2003, 78, 131-138.	4.4	28
48	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	4.3	27
49	A heat-resisting acid catalyst: Thermal stability and acidity of a thin silica layer on alumina calcined at 1493 K. Chemical Vapor Deposition, 1995, 1, 54-60.	1.3	25
50	Dealumination of proton form mordenite with high aluminum content in atmosphere. Microporous and Mesoporous Materials, 2004, 75, 61-67.	4.4	25
51	Direct Methylation of Benzene with Methane Catalyzed by Co/MFI Zeolite. ChemCatChem, 2018, 10, 3806-3812.	3.7	24
52	Quantitative Measurements of BrÃ,nsted Acidity of Zeolites by Ammonia IRMS–TPD Method and Density Functional Calculation. Chemistry Letters, 2007, 36, 1034-1035.	1.3	23
53	HZSM-5 modified by silica CVD for shape-selective production of p-xylene: Influence of in situ and ex situ preparation conditions of the zeolite. Microporous and Mesoporous Materials, 2009, 117, 523-529.	4.4	23
54	Evolution of strong acidity and high-alkane-cracking activity in ammonium-treated USY zeolites. Applied Catalysis A: General, 2011, 405, 8-17.	4.3	23

#	Article	IF	CITATIONS
55	Production of ethanol by vapor phase hydration of ethene over tungsta monolayer catalyst loaded on titania. Applied Catalysis A: General, 2008, 349, 55-61.	4.3	22
56	Quantitative analysis of acidic OH groups in zeolite by ammonia IRMS-TPD and DFT: Application to BEA. Catalysis Today, 2014, 226, 37-46.	4.4	22
57	Analysis and interpretation of acidic nature of aluminosilicates. Molecular Catalysis, 2018, 458, 116-126.	2.0	22
58	Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 2019, 277, 197-202.	4.4	22
59	Performance and characterization of BEA catalysts for catalytic cracking. Applied Catalysis A: General, 2004, 273, 63-73.	4.3	21
60	Computational Study of BrÃ,nsted Acidity of Mordenite. Effect of the Electric Field on the Infrared OH Stretching Frequencies. Journal of Physical Chemistry C, 2010, 114, 15424-15431.	3.1	21
61	Thermally stable environmental catalyst: oxidation of methane over calcined palladium loaded on silica monolayer. Catalysis Today, 1997, 35, 145-151.	4.4	20
62	A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena–alumina catalyst. Part 2. Volume of an impregnation solution. Applied Catalysis A: General, 1998, 170, 329-342.	4.3	20
63	Lipase-mediated dynamic kinetic resolution (DKR) of secondary alcohols in the presence of zeolite using an ionic liquid solvent system. Catalysis Today, 2015, 255, 41-48.	4.4	20
64	Assignments of Bending Vibrations of Ammonia Adsorbed on Surfaces of Metal Oxides. Catalysis Letters, 2015, 145, 1904-1912.	2.6	20
65	Vapor-phase Beckmann rearrangement over silica monolayers prepared by chemical vapor deposition. Applied Catalysis A: General, 1995, 124, 1-7.	4.3	19
66	Synthesis of Al-containing mesoporous silica (KSW-2) with semi-squared channels by incorporation of Al into the framework of kanemiteElectronic supplementary information (ESI) available: powder XRD patterns and 29Si MAS NMR spectra of kanemite and Al-kanemite, N2 adsorption isotherm of Al-KSW-2, TEM images of Al-KSW-2. See http://www.rsc.org/suppdata/jm/b2/b211073c/. Journal of Materials	6.7	19
67	Chemistry, 2003, 13, 883-887. Enhancement of catalytic activity for toluene disproportionation by loading Lewis acidic nickel species on ZSM-5 zeolite. Molecular Catalysis, 2017, 435, 110-117.	2.0	19
68	A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena–alumina catalyst. Part 3. Drying process. Applied Catalysis A: General, 1998, 170, 343-357.	4.3	18
69	High catalytic activity for synthesis of aniline from phenol and ammonia found on gallium-containing MFI. Applied Catalysis A: General, 1999, 180, L1-L3.	4.3	18
70	Decrease of catalytic activity and solid acidity by ion exchange of Na cation on HZSM-5. Catalysis Today, 2004, 97, 35-39.	4.4	18
71	A silica monolayer on alumina and evidence of lack of acidity of silanol attached to alumina. Journal of the Chemical Society Chemical Communications, 1989, , 289.	2.0	17
72	Germanium oxide mono-atomic layer prepared by chemical vapor deposition method on ?-alumina: the structure and acidic property. Catalysis Letters, 1995, 32, 131-138.	2.6	17

#	Article	IF	CITATIONS
73	Molecular sieving silica overlayer on tin oxide prepared using an organic template. Journal of the Chemical Society Chemical Communications, 1995, , 623.	2.0	17
74	Periodic DFT Calculation of the Energy of Ammonia Adsorption on Zeolite BrÃ,nsted Acid Sites to Support the Ammonia IRMS–TPD Experiment. Chemistry Letters, 2009, 38, 354-355.	1.3	17
75	Dealkylation of alkyl polycyclic aromatic hydrocarbon over silica monolayer solid acid catalyst. Applied Catalysis A: General, 2017, 530, 93-101.	4.3	17
76	Mechanism of tetralin conversion on zeolites for the production of benzene derivatives. Reaction Chemistry and Engineering, 2020, 5, 1272-1280.	3.7	17
77	Chemical vapor deposition of silica on silicalite crystals and shape-selective adsorption of paraffins. Microporous and Mesoporous Materials, 2001, 46, 13-21.	4.4	16
78	Standardization of catalyst preparation using reference catalyst: ion exchange of mordenite type zeolite. Applied Catalysis A: General, 2005, 283, 63-74.	4.3	16
79	Standardization of catalyst preparation using reference catalyst: ion exchange of mordenite type zeolite. Applied Catalysis A: General, 2005, 283, 75-84.	4.3	16
80	Ammonia IRMS-TPD Characterization of BrÃ,nsted Acid Sites in Medium-pore Zeolites with Different Framework Topologies. Topics in Catalysis, 2010, 53, 664-671.	2.8	16
81	Production of aldehydes from 1,2-alkanediols over silica-supported WO 3 catalyst. Applied Catalysis A: General, 2016, 526, 164-171.	4.3	16
82	Microstructure of silica monolayer solid acid catalysts determined by 29Si NMR spectroscopy. Research on Chemical Intermediates, 1998, 24, 481-494.	2.7	15
83	Synthesis and characterization of MFI-type zincosilicate zeolites with high zinc content using mechanochemically treated Si–Zn oxide composite. Microporous and Mesoporous Materials, 2019, 288, 109594.	4.4	15
84	Molecular sieving property of silica overlayer on tin oxide generated by organic template. Applied Surface Science, 1997, 121-122, 292-295.	6.1	14
85	A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena–alumina catalyst. Part 4. Preparation parameters and impact index. Applied Catalysis A: General, 1998, 170, 359-379.	4.3	13
86	Molecular Sieving Silica Overlayer on γ-Alumina: The Structure and Acidity Controlled by the Template Molecule. Langmuir, 1998, 14, 4623-4629.	3.5	13
87	Concentration of Hydroxyl Groups on Silica Monolayer Solid Acid Catalyst. Journal of Catalysis, 1999, 186, 478-480.	6.2	13
88	Keggin-type molybdovanadophosphoric acids loaded on ZSM-5 zeolite as a bifunctional catalyst for oxidehydration of glycerol. Molecular Catalysis, 2018, 449, 85-92.	2.0	13
89	Compensation between activation entropy and enthalpy in reactions of aromatic hydrocarbons catalyzed by solid acids. Catalysis Communications, 2017, 102, 103-107.	3.3	13
90	One‣tep Conversion of Glutamic Acid into 2â€Pyrrolidone on a Supported Ru Catalyst in a Hydrogen Atmosphere: Remarkable Effect of CO Activation. ChemSusChem, 2019, 12, 1381-1389.	6.8	12

#	Article	IF	CITATIONS
91	Comparative study of direct methylation of benzene with methane on cobalt-exchanged ZSM-5 and ZSM-11 zeolites. Applied Catalysis A: General, 2020, 601, 117661.	4.3	12
92	Silica Overlayers Prepared Using Organic Template Molecules on Tin Oxide and Its Molecular Sieving Property. Chemical Vapor Deposition, 1997, 3, 59-66.	1.3	11
93	Molecular-Sieving Gas Sensor Prepared by Chemical Vapor Deposition of Silica on Tin Oxide Using an Organic Template. Bulletin of the Chemical Society of Japan, 1998, 71, 513-519.	3.2	11
94	Fabrication and Catalytic Activity of Thermally Stable Gold Nanoparticles on Ultrastable Y (USY) Zeolites. Catalysts, 2013, 3, 599-613.	3.5	11
95	Adsorption kinetics in removal of basic nitrogen-containing compounds from practical heavy oils by amorphous silica-alumina. Fuel, 2020, 266, 117055.	6.4	11
96	Generation of acidity of silica monolayer by network of SI-O-SI on alumina. Research on Chemical Intermediates, 1995, 21, 137-149.	2.7	10
97	Super acidity confirmed on a monolayer of sulfate species loaded on zirconia. Studies in Surface Science and Catalysis, 2000, 130, 3213-3218.	1.5	9
98	Influence of Acidic Property on Catalytic Activity and Selectivity in Dehydration of Glycerol. ChemistrySelect, 2017, 2, 5524-5531.	1.5	9
99	Selective Formation of Active Cobalt Species for Direct Methylation of Benzene with Methane on MFI Zeolite by Co-presence of Secondary Elements. Catalysis Letters, 2019, 149, 2627-2635.	2.6	9
100	Position and Lewis acidic property of active cobalt species on MFI zeolite for catalytic methylation of benzene with methane. Microporous and Mesoporous Materials, 2021, 310, 110649.	4.4	9
101	Highly Active BEA Catalyst for Catalytic Cracking of n-Heptane. Catalysis Letters, 2003, 89, 153-157.	2.6	8
102	Acidity and cracking activity on MgHY zeolite. Microporous and Mesoporous Materials, 2011, 146, 208-215.	4.4	7
103	HZSM-5 treated with ammonia and water vapor: Characterization and cracking activity. Catalysis Today, 2012, 198, 12-18.	4.4	7
104	Formation of nanometer-sized Au particles on USY zeolites under hydrogen atmosphere. Gold Bulletin, 2012, 45, 83-90.	2.4	7
105	Selecting strong BrĂุnsted acid zeolites through screening from a database of hypothetical frameworks. Physical Chemistry Chemical Physics, 2017, 19, 14702-14707.	2.8	7
106	Selective dealkylation of alkyl polycyclic aromatic hydrocarbons towards innovative upgrading process of practical heavy oil. Catalysis Science and Technology, 2021, 11, 239-249.	4.1	7
107	3.16 Acidic Property of Silica Monolayers on Metal Oxides Prepared by CVD Method. Studies in Surface Science and Catalysis, 1994, , 333-338.	1.5	6
108	Acidic property of BEA zeolite synthesized by seed-directed method. Journal of Porous Materials, 2016, 23, 415-421.	2.6	6

#	Article	IF	CITATIONS
109	Reactivity of Methane and Benzene over Metal/MFI Zeolite Analyzed with Temperatureâ€Programmed Reaction Technique. ChemCatChem, 2020, 12, 2333-2340.	3.7	6
110	Oxidation of Sulfur Dioxide to Sulfuric Acid over Activated Carbon Catalyst Produced from Wood. Journal of the Japan Petroleum Institute, 2003, 46, 392-395.	0.6	5
111	Shape-Selective Adsorption of Substituted Benzaldehyde Isomers by a Molecular Sieving Silica Overlayer Prepared by the Chemical Vapor Deposition Method Using Organic Template on Tin Oxide. Bulletin of the Chemical Society of Japan, 2005, 78, 1425-1430.	3.2	5
112	Distribution of Acid Sites in Mordenite. Chemistry Letters, 2005, 34, 398-399.	1.3	5
113	Combined Method of Ammonia IRMS-TPD Experiment and DFT Calculation to Characterize Zeolite Acidity. Journal of the Japan Petroleum Institute, 2009, 52, 172-179.	0.6	5
114	Brownmilleriteâ€Type Crystalline Ca 2 FeCoO 5 Ultrasmall Particles with Singleâ€Nanometer Dimensions as an Active Cocatalyst for Oxygen Photoevolution Reaction. Particle and Particle Systems Characterization, 2020, 37, 2000053.	2.3	5
115	Molecular shape-selective detection by tin oxide film sensor modified with chemical vapor deposition of molecular-sieving silica overlayer using organic template. Sensors and Actuators B: Chemical, 2007, 124, 398-406.	7.8	4
116	Spontaneous Dispersion of Gold Nanoparticles Loaded on USY Zeolites as Analyzed by XAFS, XRD, and TEM. Chemistry Letters, 2012, 41, 337-339.	1.3	4
117	Structure and catalysis of layered Nb–W oxide constructed by the self-assembly of nanofibers. Catalysis Today, 2013, 204, 197-203.	4.4	4
118	Removal of Basic Compounds and Dealkylation of Alkyl Polycyclic Aromatic Hydrocarbons in Vacuum Gas Oil. Journal of the Japan Petroleum Institute, 2018, 61, 294-301.	0.6	4
119	Improvement of Photoelectrocatalytic Activity and Stability of WO ₃ for Oxygen Photoevolution Reaction by Loading of Brownmilleriteâ€Type Ca ₂ FeCoO ₅ as a Cocatalyst. Energy Technology, 2021, 9, 2100197.	3.8	4
120	A Continuous-Flow Method for Chemical Vapor Deposition of Tetramethoxysilane on .GAMMAAlumina to Prepare Silica Monolayer Solid Acid Catalyst Journal of Chemical Engineering of Japan, 2001, 34, 306-311.	0.6	4
121	37 Catalytic activity of gallium-loaded ZSM-5 zeolite for synthesis of aniline from phenol and ammonia. Studies in Surface Science and Catalysis, 2003, , 197-200.	1.5	3
122	Formation of Selective Adsorption Cavity by Chemical Vapor Deposition of Molecular Sieving Silica Overlayer on Alumina using Molecular Template in the Presence of Acetic Acid. Bulletin of the Chemical Society of Japan, 2005, 78, 1001-1007.	3.2	3
123	Solid Acidity of Zeolites. Springer Series in Materials Science, 2010, , 9-27.	0.6	3
124	MFI zeolite-supported Ru nanoparticles for efficient conversion of pyroglutamic acid to 2-pyrrolidone. Reaction Chemistry and Engineering, 2021, 6, 1920-1927.	3.7	3
125	Acidic property of YNU-5 zeolite influenced by its unique micropore system. Microporous and Mesoporous Materials, 2022, 330, 111592.	4.4	3
126	Measurements of Acidity of H-SSZ-35 by a Combined Method of IRMS-TPD Experiment and DFT Calculation. Catalysis Letters, 2010, 140, 134-139.	2.6	2

#	Article	IF	CITATIONS
127	Acid-base catalysis advanced sciences and spreading applications to solutions of environmental, resources and energy issues: ABC-7, 7th International Symposium on Acid–Base Catalysis, Tokyo, May 12–15, 2013. Catalysis Today, 2014, 226, 1.	4.4	2
128	IRMS-TPD Measurements of Acid Sites. Springer Series in Materials Science, 2010, , 29-59.	0.6	1
129	Formation and Catalysis of Mesoporous Nb–Mo Oxide Generated by the Self-assembly of Nanoparticles. Chemistry Letters, 2012, 41, 947-949.	1.3	1
130	Solid Acidity on Zeolites and Metal Oxide Monolayers Measured by the Temperature Programmed Desorption of Ammonia. Hyomen Kagaku, 2003, 24, 635-641.	0.0	1
131	Brownmillerite-type Ca ₂ Fe _{0.75} Co _{1.25} O ₅ as a Robust Electrocatalyst for Oxygen Evolution Reaction in Neutral Conditions. Sustainable Energy and Fuels, 0,	4.9	1
132	Analysis of Acidic Properties of Zeolitic and Non-Zeolitic Solid Acid Catalysts Using Temperature-Programmed Desorption of Ammonia. ChemInform, 2004, 35, no.	0.0	0
133	Catalytic Reaction on the Palladium-Loaded Zeolites. Springer Series in Materials Science, 2010, , 163-179.	0.6	0
134	Application of the CVD of Silica to the Shape Selective Reaction. Springer Series in Materials Science, 2010, , 129-147.	0.6	0
135	CVD of Silica for the Shape Selective Reaction. Springer Series in Materials Science, 2010, , 103-127.	0.6	0
136	Production of Activated Carbon by Simple Steaming of Wood. Kagaku Kogaku Ronbunshu, 2003, 29, 488-492.	0.3	0
137	Trinity Study on the Zeolite Acidity using Thermal Measurements, Spectroscopy, and Density Functional Theory Calculation. Hyomen Kagaku, 2009, 30, 104-110.	0.0	0
138	DFT Calculation of the Solid Acidity. Springer Series in Materials Science, 2010, , 61-78.	0.6	0
139	Catalytic Activity and Adsorption Property. Springer Series in Materials Science, 2010, , 79-101.	0.6	0
140	Zeolite Loading Property for Active Sites and XAFS Measurements. Springer Series in Materials Science, 2010, , 149-162.	0.6	0