
Satoshi Mitarai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epidemiology of Pulmonary Nontuberculous Mycobacterial Disease, Japan1. Emerging Infectious Diseases, 2016, 22, 1116-1117.	4.3	337
2	A Laboratory-based Analysis of Nontuberculous Mycobacterial Lung Disease in Japan from 2012 to 2013. Annals of the American Thoracic Society, 2017, 14, 49-56.	3.2	109
3	TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome Sequencing. PLoS ONE, 2015, 10, e0142951.	2.5	77
4	Promising loci of variable numbers of tandem repeats for typing Beijing family Mycobacterium tuberculosis. Journal of Medical Microbiology, 2008, 57, 873-880.	1.8	71
5	Diagnostic accuracy of a novel tuberculosis point-of-care urine lipoarabinomannan assay for people living with HIV: A meta-analysis of individual in- and outpatient data. PLoS Medicine, 2020, 17, e1003113.	8.4	54
6	Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. Journal of Clinical Investigation, 2020, 130, 5756-5764.	8.2	53
7	Comprehensive Multicenter Evaluation of a New Line Probe Assay Kit for Identification of Mycobacterium Species and Detection of Drug-Resistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2012, 50, 884-890.	3.9	52
8	Interrelational changes in the epidemiology and clinical features of nontuberculous mycobacterial pulmonary disease and tuberculosis in a referral hospital in Japan. Respiratory Medicine, 2019, 152, 74-80.	2.9	45
9	Biological and Molecular Characteristics of <i>Mycobacterium tuberculosis</i> Clinical Isolates with Low-Level Resistance to Isoniazid in Japan. Journal of Clinical Microbiology, 2008, 46, 2263-2268.	3.9	42
10	Epidemiology of Adults and Children Treated for Nontuberculous Mycobacterial Pulmonary Disease in Japan. Annals of the American Thoracic Society, 2019, 16, 341-347.	3.2	42
11	Diagnostic Accuracy of a Novel and Rapid Lipoarabinomannan Test for Diagnosing Tuberculosis Among People With Human Immunodeficiency Virus. Open Forum Infectious Diseases, 2020, 7, ofz530.	0.9	36
12	Comparative evaluation of three immunochromatographic identification tests for culture confirmation of Mycobacterium tuberculosis complex. BMC Infectious Diseases, 2014, 14, 54.	2.9	28
13	Antimicrobial susceptibility testing of Mycobacteroides (Mycobacterium) abscessus complex, Mycolicibacterium (Mycobacterium) fortuitum, and Mycobacteroides (Mycobacterium) chelonae. Journal of Infection and Chemotherapy, 2019, 25, 117-123.	1.7	27
14	Detection of Mycobacterium tuberculosis (MTB) in Fecal Specimens From Adults Diagnosed With Pulmonary Tuberculosis Using the Xpert MTB/Rifampicin Test. Open Forum Infectious Diseases, 2015, 2, ofv074.	0.9	25
15	Laboratory evaluation of the Anyplexâ"¢ II MTB/MDR and MTB/XDR tests based on multiplex real-time PCR and melting-temperature analysis to identify Mycobacterium tuberculosis and drug resistance. Diagnostic Microbiology and Infectious Disease, 2017, 89, 276-281.	1.8	23
16	Clinico-microbiological analysis of 121 patients with pulmonary Mycobacteroides abscessus complex disease in Japan – An NTM-JRC study with RIT. Respiratory Medicine, 2018, 145, 14-20.	2.9	22
17	Association between <i>pncA</i> Gene Mutations, Pyrazinamidase Activity, and Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 4928-4930.	3.2	21
18	Ultrasensitive enzyme-linked immunosorbent assay for the detection of MPT64 secretory antigen to evaluate Mycobacterium tuberculosis viability in sputum. International Journal of Infectious Diseases, 2020, 96, 244-253.	3.3	17

Satoshi Mitarai

#	Article	IF	CITATIONS
19	Prevention of aerosol isolation of nontuberculous mycobacterium from the patient's bathroom. ERJ Open Research, 2018, 4, 00150-2017.	2.6	16
20	A novel DNA chromatography method to discriminate Mycobacterium abscessus subspecies and macrolide susceptibility. EBioMedicine, 2021, 64, 103187.	6.1	16
21	First case of sexually transmitted asymptomatic female genital tuberculosis from spousal epididymal tuberculosis diagnosed by active screening. International Journal of Infectious Diseases, 2018, 73, 60-62.	3.3	15
22	Mycobacterium abscessus ssp. abscessus infection progressing to empyema from vertebral osteomyelitis in an immunocompetent patient without pulmonary disease: a case report. BMC Pulmonary Medicine, 2019, 19, 100.	2.0	14
23	Multidrug Resistant Tuberculosis With Simultaneously Acquired Drug Resistance to Bedaquiline and Delamanid. Clinical Infectious Diseases, 2021, 73, 2329-2331.	5.8	13
24	Potential Cross-Transmission of Mycobacterium abscessus among Non-Cystic Fibrosis Patients at a Tertiary Hospital in Japan. Microbiology Spectrum, 2022, 10, e0009722.	3.0	9
25	A Multimethod, Multicountry Evaluation of Breakpoints for Bedaquiline Resistance Determination. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
26	Clinical risk factors related to treatment failure in Mycobacterium abscessus lung disease. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 247-254.	2.9	7
27	Efficacy estimation of a combination of triple antimicrobial agents against clinical isolates of <i>Mycobacterium abscessus</i> subsp. <i>abscessus in vitro</i> . JAC-Antimicrobial Resistance, 2021, 3, dlab004.	2.1	7
28	Minimum Inhibitory Concentrations before and after Antibacterial Treatment in Patients with Mycobacterium abscessus Pulmonary Disease. Microbiology Spectrum, 2021, 9, e0192821.	3.0	7
29	Molecular Epidemiological Characteristics of Mycobacterium abscessus Complex Derived from Non-Cystic Fibrosis Patients in Japan and Taiwan. Microbiology Spectrum, 2022, 10, e0057122.	3.0	7
30	Congenital tuberculosis in an extremely preterm infant and prevention of nosocomial infection. Journal of Infection and Chemotherapy, 2019, 25, 727-730.	1.7	6
31	A simplified pyrazinamidase test for pyrazinamide drug susceptibility in Mycobacterium tuberculosis. Journal of Microbiological Methods, 2018, 154, 52-54.	1.6	5
32	Performance evaluation of Xpert MTB/RIF in a moderate tuberculosis incidence compared with TaqMan MTB and TRCRapid M.TB. Journal of Infection and Chemotherapy, 2017, 23, 101-106.	1.7	4
33	Evaluation of PyroMark Q24 pyrosequencing as a method for the identification of mycobacteria. Diagnostic Microbiology and Infectious Disease, 2018, 90, 35-39.	1.8	4
34	Evaluation of Q Gene Mycobacteria: A novel and easy nucleic acid chromatography method for mycobacterial species identification. Journal of Microbiological Methods, 2019, 163, 105657.	1.6	4
35	Actual practice of standard treatment for pulmonary nontuberculous mycobacteriosis in Japan. Respiratory Medicine, 2019, 158, 67-69.	2.9	4
36	COBAS® TaqMan® MTB, smear positivity grade and MGIT culture; correlation analyses of three methods for bacillary quantification. Journal of Infection and Chemotherapy, 2016, 22, 19-23.	1.7	3

Satoshi Mitarai

#	Article	IF	CITATIONS
37	A case of Mycobacterium tuberculosis laboratory cross-contamination. Journal of Infection and Chemotherapy, 2019, 25, 610-614.	1.7	3
38	Population-Based Distribution of Mycobacterium avium and Mycobacterium intracellulare in Japan. Microbiology Research, 2021, 12, 739-743.	1.9	3
39	Diagnostic Accuracy of Urine Lipoarabinomannan Testing in Early Morning Urine versus Spot Urine for Diagnosis of Tuberculosis among People with HIV. Microbiology Spectrum, 2022, , e0020822.	3.0	2
40	Clinical evaluation of the cobas® MTB-RIF/INH reagent and the cobas® 6800 for the detection of isoniazid and rifampicin resistance. Tuberculosis, 2022, 134, 102199.	1.9	2
41	Current situation of tuberculosis in Japan and requirement for new vaccine. Vaccine, 2014, 32, 304-305.	3.8	1
42	Six species of nontuberculous mycobacteria carry non-identical 16S rRNA gene copies. Journal of Microbiological Methods, 2018, 155, 34-36.	1.6	1
43	Peritoneal dialysis-associated peritonitis caused by Mycobacteroides massiliense: the first case and review of the literature. BMC Nephrology, 2021, 22, 90.	1.8	1
44	PB-01Comparison of fundamental morphological properties between species belonging to genera Mycobacterium, Mycobacteroides and Mycolicibacterium. Microscopy (Oxford, England), 2018, 67, i32-i32.	1.5	0
45	PB-01 Comparison of the fundamental cell morphological properties examined with whole-mount ice-embedded cryo-TEM between 5 genera in family Mycobacteriacea. Microscopy (Oxford, England), 2019, 68, i46-i46.	1.5	Ο
46	Antimicrobial susceptibility patterns and MICs among non-photochromogenic rapidly growing Mycobacteroides and Mycolicibacterium species. Journal of Medical Microbiology, 2019, 68, 1279-1286.	1.8	0
47	Anti-Mycobacterial Drug Resistance in Japan: How to Approach This Problem?. Antibiotics, 2022, 11, 19.	3.7	Ο
48	Development of a nucleic acid chromatography assay for the detection of commonly isolated rapidly growing mycobacteria. Journal of Medical Microbiology, 2021, 70, .	1.8	0
49	Title is missing!. , 2020, 17, e1003113.		Ο
50	Title is missing!. , 2020, 17, e1003113.		0
51	Title is missing!. , 2020, 17, e1003113.		0
52	A case of primary multidrug-resistant pulmonary tuberculosis with high minimum inhibitory concentration value for bedaquiline. Journal of Infection and Chemotherapy, 2022, , .	1.7	0