Florian Gnad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490511/publications.pdf

Version: 2024-02-01

57631 123241 18,979 61 44 61 citations h-index g-index papers 63 63 63 29292 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 2009, 325, 834-840.	6.0	3,883
2	Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell, 2006, 127, 635-648.	13.5	3,201
3	Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signaling, 2010, 3, ra3.	1.6	1,319
4	Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics, 2012, 44, 1111-1116.	9.4	906
5	Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488, 660-664.	13.7	862
6	Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints. Cell, 2010, 141, 897-907.	13.5	789
7	Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nature Genetics, 2016, 48, 407-416.	9.4	730
8	A comprehensive transcriptional portrait of human cancer cell lines. Nature Biotechnology, 2015, 33, 306-312.	9.4	556
9	Kinase-Selective Enrichment Enables Quantitative Phosphoproteomics of the Kinome across the Cell Cycle. Molecular Cell, 2008, 31, 438-448.	4.5	548
10	PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biology, 2007, 8, R250.	13.9	410
11	Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation. Molecular and Cellular Proteomics, 2008, 7, 299-307.	2.5	385
12	PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Research, 2011, 39, D253-D260.	6.5	366
13	The Serine/Threonine/Tyrosine Phosphoproteome of the Model Bacterium Bacillus subtilis. Molecular and Cellular Proteomics, 2007, 6, 697-707.	2.5	359
14	USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550, 534-538.	13.7	258
15	Large-scale Proteomics Analysis of the Human Kinome. Molecular and Cellular Proteomics, 2009, 8, 1751-1764.	2.5	257
16	Site-Specific Identification of SUMO-2 Targets in Cells Reveals an Inverted SUMOylation Motif and a Hydrophobic Cluster SUMOylation Motif. Molecular Cell, 2010, 39, 641-652.	4. 5	255
17	Brain Phosphoproteome Obtained by a FASP-Based Method Reveals Plasma Membrane Protein Topology. Journal of Proteome Research, 2010, 9, 3280-3289.	1.8	253
18	Mapping N-Glycosylation Sites across Seven Evolutionarily Distant Species Reveals a Divergent Substrate Proteome Despite a Common Core Machinery. Molecular Cell, 2012, 46, 542-548.	4. 5	238

#	Article	IF	Citations
19	Systems-wide Proteomic Analysis in Mammalian Cells Reveals Conserved, Functional Protein Turnover. Journal of Proteome Research, 2011, 10, 5275-5284.	1.8	235
20	Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Molecular Systems Biology, 2012, 8, 611.	3.2	221
21	15 years of PhosphoSitePlus $\hat{A}^{@}$: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Research, 2019, 47, D433-D441.	6.5	208
22	CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. Journal of Clinical Investigation, 2016, 126, 639-652.	3.9	185
23	Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Research, 2012, 22, 2315-2327.	2.4	177
24	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	9.4	155
25	Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. Cell Reports, 2016, 16, 2605-2617.	2.9	155
26	Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genomics, 2013, 14, S7.	1.2	153
27	The Ser/Thr/Tyr phosphoproteome of <i>Lactococcus lactis</i> IL1403 reveals multiply phosphorylated proteins. Proteomics, 2008, 8, 3486-3493.	1.3	145
28	Solid Tumor Proteome and Phosphoproteome Analysis by High Resolution Mass Spectrometry. Journal of Proteome Research, 2008, 7, 5314-5326.	1.8	132
29	Highâ€accuracy identification and bioinformatic analysis of <i>in vivo</i> protein phosphorylation sites in yeast. Proteomics, 2009, 9, 4642-4652.	1.3	132
30	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of <i>Bacillus subtilis</i> . Journal of Proteome Research, 2010, 9, 3638-3646.	1.8	108
31	Phosphoproteins of the chicken eggshell calcified layer. Proteomics, 2007, 7, 106-115.	1.3	102
32	Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics, 2006, 22, 2577-2579.	1.8	96
33	Systems-wide Analysis of a Phosphatase Knock-down by Quantitative Proteomics and Phosphoproteomics. Molecular and Cellular Proteomics, 2009, 8, 1908-1920.	2.5	94
34	Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics, 2008, 8, 4534-4546.	1.3	93
35	The Case for Proteomics and Phosphoâ€Proteomics in Personalized Cancer Medicine. Proteomics - Clinical Applications, 2019, 13, e1800113.	0.8	88
36	Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life. PLoS ONE, 2009, 4, e4777.	1.1	84

#	Article	IF	CITATIONS
37	NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clinical Cancer Research, 2021, 27, 877-888.	3.2	84
38	Evolutionary Constraints of Phosphorylation in Eukaryotes, Prokaryotes, and Mitochondria. Molecular and Cellular Proteomics, 2010, 9, 2642-2653.	2.5	83
39	Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nature Communications, 2014, 5, 3830.	5.8	77
40	Profiling the Trypanosoma cruzi Phosphoproteome. PLoS ONE, 2011, 6, e25381.	1.1	68
41	<i>Caenorhabditis elegans</i> Has a Phosphoproteome Atypical for Metazoans That Is Enriched in Developmental and Sex Determination Proteins. Journal of Proteome Research, 2009, 8, 4039-4049.	1.8	66
42	C2 Domain-Containing Phosphoprotein CDP138 Regulates GLUT4 Insertion into the Plasma Membrane. Cell Metabolism, 2011, 14, 378-389.	7.2	64
43	Predicting post-translational lysine acetylation using support vector machines. Bioinformatics, 2010, 26, 1666-1668.	1.8	61
44	<i>Kras</i> mutant genetically engineered mouse models of human cancers are genomically heterogeneous. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10947-E10955.	3.3	58
45	<scp>PAK1</scp> mediates pancreatic cancer cell migration and resistance to <scp>MET</scp> inhibition. Journal of Pathology, 2014, 234, 502-513.	2.1	44
46	Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Molecular and Cellular Proteomics, 2013, 12, 2070-2080.	2.5	43
47	Phosphoproteome of Pristionchus pacificus Provides Insights into Architecture of Signaling Networks in Nematode Models. Molecular and Cellular Proteomics, 2012, 11, 1631-1639.	2.5	30
48	Bioinformatics analysis of thousands of TCGA tumors to determine the involvement of epigenetic regulators in human cancer. BMC Genomics, 2015, 16, S5.	1.2	29
49	iProteinDB: An Integrative Database of <i>Drosophila</i> Post-translational Modifications. G3: Genes, Genomes, Genetics, 2019, 9, 1-11.	0.8	24
50	MAPU 2.0: high-accuracy proteomes mapped to genomes. Nucleic Acids Research, 2009, 37, D902-D906.	6.5	18
51	Systematic analysis of the intersection of disease mutations with protein modifications. BMC Medical Genomics, 2019, 12, 109.	0.7	16
52	ERBB3 and IGF1R Signaling Are Required for Nrf2-Dependent Growth in KEAP1-Mutant Lung Cancer. Cancer Research, 2019, 79, 4828-4839.	0.4	15
53	Role of the E3 ubiquitin ligase RNF157 as a novel downstream effector linking PI3K and MAPK signaling pathways to the cell cycle. Journal of Biological Chemistry, 2017, 292, 14311-14324.	1.6	14
54	Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nature Communications, 2022, 13, 2057.	5.8	12

#	ARTICLE	IF	CITATIONS
55	Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death. Molecular and Cellular Proteomics, 2016, 15, 2293-2307.	2.5	7
56	Phosphoproteome analysis of the MAPK pathway reveals previously undetected feedback mechanisms. Proteomics, 2016, 16, 1998-2004.	1.3	6
57	Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling. PLoS Computational Biology, 2016, 12, e1004995.	1.5	5
58	Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network. Proteomics, 2016, 16, 1992-1997.	1.3	4
59	Integrative analysis of two cell lines derived from a non-small-lung cancer patienta panomics approach. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2014, , 75-86.	0.7	4
60	Proteus: a web-based, context-specific modelling tool for molecular networks. Bioinformatics, 2012, 28, 1284-1286.	1.8	3
61	Applying graph database technology for analyzing perturbed co-expression networks in cancer. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	2