
Louise E M Vet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecology of Infochemical Use by Natural Enemies in a Tritrophic Context. Annual Review of Entomology, 1992, 37, 141-172.	11.8	1,573
2	Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution, 2001, 16, 547-554.	8.7	482
3	Learning of Host-Finding Cues by Hymenopterous Parasitoids. , 1993, , 51-78.		319
4	An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiological Entomology, 1983, 8, 97-106.	1.5	288
5	PHEROMONE-MEDIATED AGGREGATION IN NONSOCIAL ARTHROPODS: An Evolutionary Ecological Perspective. Annual Review of Entomology, 2005, 50, 321-346.	11.8	265
6	Semiochemicals and learning in parasitoids. Journal of Chemical Ecology, 1990, 16, 3119-3135.	1.8	245
7	Parasitoid Foraging and Learning. , 1995, , 65-101.		223
8	Candidate genes for behavioural ecology. Trends in Ecology and Evolution, 2005, 20, 96-104.	8.7	214
9	Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. Journal of Animal Ecology, 2005, 74, 1121-1130.	2.8	208
10	A variable-response model for parasitoid foraging behavior. Journal of Insect Behavior, 1990, 3, 471-490.	0.7	186
11	Fitness, parasitoids, and biological control: an opinion. Canadian Entomologist, 2001, 133, 429-438.	0.8	178
12	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
13	Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host. PLoS Biology, 2012, 10, e1001435.	5.6	168
14	Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoidCotesia glomerata. Journal of Chemical Ecology, 1993, 19, 47-59.	1.8	158
15	Comparative Analysis of Headspace Volatiles from Different Caterpillar-Infested or Uninfested Food Plants of Pieris Species. Journal of Chemical Ecology, 1997, 23, 2935-2954.	1.8	158
16	Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos, 2007, 116, 367-376.	2.7	157
17	Variations in Parasitoid Foraging Behavior: Essential Element of a Sound Biological Control Theory. Environmental Entomology, 1990, 19, 1183-1193.	1.4	156
18	Relative importance of vertebrates and invertebrates in epigeaic weed seed predation in organic cereal fields. Agriculture, Ecosystems and Environment, 2003, 95, 417-425.	5.3	153

#	Article	IF	CITATIONS
19	How To Hunt for Hiding Hosts: the Reliability-Detectability Problem in Foraging Parasitoids. Animal Biology, 1990, 41, 202-213.	0.4	152
20	Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 2003, 4, 63-77.	2.7	147
21	Odor learning and foraging success in the parasitoid,Leptopilina heterotoma. Journal of Chemical Ecology, 1990, 16, 3137-3150.	1.8	146
22	How Parasitic Wasps Find their Hosts. Scientific American, 1993, 266, 100-106.	1.0	146
23	Response of the braconid parasitoid Cotesia (=Apanteles) glomerata to volatile infochemicals: effects of bioassay setâ€up, parasitoid age and experience and barometric flux. Entomologia Experimentalis Et Applicata, 1992, 63, 163-175.	1.4	142
24	Seasonal dynamic shifts in patch exploitation by parasitic wasps. Behavioral Ecology, 1992, 3, 156-165.	2.2	137
25	Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecology Letters, 2001, 4, 38-45.	6.4	134
26	Host-Habitat Location Through Olfactory Cues By Leptopilina Cla Vipes (Hartig) (Hym.: Eucoilidae), a Parasitoid of Fungivorous Drosophila: the Influence of Conditioning. Animal Biology, 1982, 33, 225-248.	0.4	128
27	Allee effect in larval resource exploitation inDrosophila: an interaction among density of adults, larvae, and micro-organisms. Ecological Entomology, 2002, 27, 608-617.	2.2	128
28	Innate responses of the parasitoidsCotesia glomerata andC. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. Journal of Insect Behavior, 1996, 9, 525-538.	0.7	127
29	Chemical diversity in <i>Brassica oleracea</i> affects biodiversity of insect herbivores. Ecology, 2009, 90, 1863-1877.	3.2	120
30	Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 889-897.	2.6	120
31	Volatiles from damaged plants as major cues in longâ€range hostâ€searching by the specialist parasitoid Cotesia rubecula. Entomologia Experimentalis Et Applicata, 1994, 73, 289-297.	1.4	118
32	Development of the parasitoid, Cotesia rubecula (Hymenoptera: Braconidae) in Pieris rapae and Pieris brassicae (Lepidoptera: Pieridae): evidence for host regulation. Journal of Insect Physiology, 1999, 45, 173-182.	2.0	118
33	Learning to discriminate between infochemicals from different plant-host complexes by the parasitoids Cotesia glomerata and C. rubecula. Entomologia Experimentalis Et Applicata, 1998, 86, 241-252.	1.4	116
34	Host microhabitat location by stem-borer parasitoidCotesia flavipes: the role of herbivore volatiles and locally and systemically induced plant volatiles. Journal of Chemical Ecology, 1995, 21, 525-539.	1.8	115
35	Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia, 2007, 152, 257-264.	2.0	112
36	Antennal sensilla of two parasitoid wasps: A comparative scanning electron microscopy study. Microscopy Research and Technique, 2004, 63, 266-273.	2.2	109

#	Article	IF	CITATIONS
37	Beneficial arthropod behavior mediated by airborne semiochemicals. VIII. Learning of host-related odors induced by a brief contact experience with host by-products inCotesia marginiventris (Cresson), a generalist larval parasitoid. Journal of Insect Behavior, 1989, 2, 217-225.	0.7	106
38	Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia, 2009, 160, 299-308.	2.0	106
39	How contact foraging experiences affect preferences for host-related odors in the larval parasitoidCotesia marginiventris (Cresson) (Hymenoptera: Braconidae). Journal of Chemical Ecology, 1990, 16, 1577-1589.	1.8	99
40	Variation In Plant Volatiles and Attraction Of The ParasitoidDiadegma semiclausum(Hellén). Journal of Chemical Ecology, 2005, 31, 461-480.	1.8	96
41	GC-EAC-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology, 2002, 12, 169-176.	1.1	93
42	The role of pre- and post- alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos, 2005, 109, 435-446.	2.7	93
43	Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1539-1546.	2.6	93
44	Herbivoreâ€induced plant responses in <i>Brassica oleracea</i> prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecological Entomology, 2010, 35, 240-247.	2.2	91
45	Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms. Journal of Chemical Ecology, 2012, 38, 755-767.	1.8	90
46	Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 2009, 27, 621-627.	9.3	89
47	Long-Distance Assessment of Patch Profitability through Volatile Infochemicals by the ParasitoidsCotesia glomerataandC. rubecula(Hymenoptera: Braconidae). Biological Control, 1998, 11, 113-121.	3.0	88
48	Field parasitism rates of caterpillars on <i>Brassica oleracea </i> plants are reliably predicted by differential attraction of <i>Cotesia</i> parasitoids. Functional Ecology, 2009, 23, 951-962.	3.6	87
49	From Chemical to Population Ecology: Infochemical Use in an Evolutionary Context. Journal of Chemical Ecology, 1999, 25, 31-49.	1.8	85
50	The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Animal Behaviour, 1998, 55, 1271-1279.	1.9	82
51	Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy, 2019, 11, 1256-1263.	5.6	82
52	The influence of conditioning on olfactory microhabitat and host location in Asobara tabida (Nees) and A. rufescens (Foerster) (Braconidae: Alysiinae) larval parasitoids of Drosophilidae. Oecologia, 1984, 63, 171-177.	2.0	81
53	Usurpation of host behaviour by a parasitic wasp. Animal Behaviour, 1994, 48, 187-192.	1.9	79
54	Impact of hydraulic retention time on community assembly and function of photogranules for wastewater treatment. Water Research, 2020, 173, 115506.	11.3	79

#	Article	IF	CITATIONS
55	Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid. Journal of Chemical Ecology, 2012, 38, 100-115.	1.8	77
56	Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biological Control, 2005, 33, 131-142.	3.0	76
57	A Comparative Functional Approach to the Host Detection Behaviour of Parasitic Wasps. 1. A Qualitative Study on Eucoilidae and Alysiinae. Oikos, 1985, 44, 478.	2.7	72
58	The parasiteâ€host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Zeitschrift Für Angewandte Entomologie, 1980, 90, 26-51.	0.0	72
59	Patch exploitation by the parasitoids Cotesia rubecula and Cotesia glomerata in multiâ€patch environments with different host distributions. Journal of Animal Ecology, 1998, 67, 774-783.	2.8	71
60	Intra- and interspecific host discrimination in Asobara (Hymenoptera) larval endo-parasitoids of Drosophilidae: Comparison between closely related and less closely related species. Animal Behaviour, 1984, 32, 871-874.	1.9	70
61	Clutch Size in a Larval-Pupal Endoparasitoid: Consequences for Fitness. Journal of Animal Ecology, 1994, 63, 807.	2.8	69
62	Ecological and Evolutionary Consequences of Biological Invasion and Habitat Fragmentation. Ecosystems, 2005, 8, 657-667.	3.4	68
63	Diploid males sire triploid daughters and sons in the parasitoid wasp Cotesia vestalis. Heredity, 2007, 99, 288-294.	2.6	68
64	Venturia canescens parasitizing Galleria mellonella and Anagasta kuehniella: differing suitability of two hosts with highly variable growth potential. Entomologia Experimentalis Et Applicata, 1997, 84, 93-100.	1.4	67
65	Nextâ€generation biological control: the need for integrating genetics and genomics. Biological Reviews, 2020, 95, 1838-1854.	10.4	67
66	The role of host species, age and defensive behaviour on ovipositional decisions in a solitary specialist and gregarious generalist parasitoid (<i>Cotesia</i> species). Entomologia Experimentalis Et Applicata, 1996, 81, 125-132.	1.4	66
67	Infochemicals structure marine, terrestrial and freshwater food webs: Implications for ecological informatics. Ecological Informatics, 2006, 1, 23-32.	5.2	66
68	Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C. rubecula in the Netherlands: predicting field performance from laboratory data. Oecologia, 2000, 124, 55-63.	2.0	65
69	Barbarea vulgaris Glucosinolate Phenotypes Differentially Affect Performance and Preference of Two Different Species of Lepidopteran Herbivores. Journal of Chemical Ecology, 2008, 34, 121-131.	1.8	65
70	Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biological Invasions, 2010, 12, 3045-3059.	2.4	64
71	Closing Domestic Nutrient Cycles Using Microalgae. Environmental Science & Technology, 2015, 49, 12450-12456.	10.0	64
72	Three-dimensional organization of the glomeruli in the antennal lobe of the parasitoid wasps Cotesia glomerata and C. rubecula. Cell and Tissue Research, 2003, 312, 237-248.	2.9	63

#	Article	IF	CITATIONS
73	Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecological Entomology, 2006, 31, 216-226.	2.2	62
74	Unrewarding experiences and their effect on foraging in the parasitic waspLeptopilina heterotoma (Hymenoptera: Eucoilidae). Journal of Insect Behavior, 1994, 7, 465-481.	0.7	61
75	Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomologia Experimentalis Et Applicata, 2002, 103, 61-71.	1.4	61
76	Differences in memory dynamics between two closely related parasitoid wasp species. Animal Behaviour, 2006, 71, 1343-1350.	1.9	61
77	Relationships between parasitoid host range and host defence: a comparative study of egg encapsulation in two related parasitoid species. Physiological Entomology, 1995, 20, 7-12.	1.5	58
78	Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry, 2012, 77, 162-170.	2.9	58
79	Microhabitat location and niche segregation in two sibling species of Drosophilid parasitoids: Asobara tabida (Nees) and A. rufescens (Foerster) (Braconidae: Alysiinae). Oecologia, 1984, 61, 182-188.	2.0	55
80	Comparison of learning in related generalist and specialist eucoilid parasitoids. Entomologia Experimentalis Et Applicata, 1992, 64, 117-124.	1.4	55
81	Larval parasitoid uses aggregation pheromone of adult hosts in foraging behaviour: a solution to the reliability-detectability problem. Oecologia, 1993, 93, 145-148.	2.0	55
82	Preference and performance of the hyperparasitoid Syrphophagus aphidivorus (Hymenoptera:) Tj ETQq0 0 0 rg Entomology, 2004, 29, 648-656.	BT /Overloo 2.2	ck 10 Tf 50 38 55
83	Identification of Biologically Relevant Compounds in Aboveground and Belowground Induced Volatile Blends. Journal of Chemical Ecology, 2010, 36, 1006-1016.	1.8	55
84	Foraging for solitarily and gregariously feeding caterpillars: A comparison of two related parasitoid species (Hymenoptera: Braconidae). Journal of Insect Behavior, 1994, 7, 585-603.	0.7	53
85	Parasitoid searching efficiency links behaviour to population processes Applied Entomology and Zoology, 2001, 36, 399-408.	1.2	53
86	Generalist and Specialist Parasitoid Strategies of Using Odours of Adult Drosophilid Flies When Searching for Larval Hosts. Oikos, 1996, 77, 390.	2.7	52
87	Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: A field test of laboratory findings. Biological Control, 2006, 39, 105-114.	3.0	52
88	Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Functional Ecology, 2011, 25, 1113-1124.	3.6	51
89	Effects of Pieris host species on life history parameters in a solitary specialist and gregarious generalist parasitoid (Cotesia species). Entomologia Experimentalis Et Applicata, 1998, 86, 145-152.	1.4	50
90	The complexity of learning, memory and neural processes in an evolutionary ecological context. Current Opinion in Insect Science, 2016, 15, 61-69.	4.4	49

#	Article	IF	CITATIONS
91	Plant competition in pest-suppressive intercropping systems complicates evaluation of herbivore responses. Agriculture, Ecosystems and Environment, 2004, 102, 185-196.	5.3	48
92	The parasiteâ€host relationship between <i>Encarsia formosa</i> Gah. (Hymenoptera: Aphelinidae) and <i>Trialeurodes vaporariorum</i> (Westw.) (Homoptera: Aleyrodidae). Zeitschrift Für Angewandte Entomologie, 1981, 91, 327-348.	0.0	48
93	Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila-Leptopilina interaction. Oikos, 2003, 100, 269-282.	2.7	47
94	Behavioural responses of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) to extracts derived from Melia azedarach and Azadirachta indica. Bulletin of Entomological Research, 2005, 95, 457-465.	1.0	47
95	Absence of odour learning in the stemborer parasitoidCotesia flavipes. Animal Behaviour, 1997, 53, 1211-1223.	1.9	46
96	Fitness consequences of superparasitism and mechanism of host discrimination in the stemborer parasitoid Cotesia flavipes. Entomologia Experimentalis Et Applicata, 1997, 82, 341-348.	1.4	45
97	Influence of presence and spatial arrangement of belowground insects on hostâ€plant selection of aboveground insects: a field study. Ecological Entomology, 2009, 34, 339-345.	2.2	45
98	Prey-mediated effects of glucosinolates on aphid predators. Ecological Entomology, 2011, 36, 377-388.	2.2	45
99	Host-Habitat Location and Host Location By Diachasma Alloeum Muesebeck (Hym.; Braconidae), a Parasitoid of Rhagoletis Pomonella Walsh (Dipt.; Tephritidae). Animal Biology, 1982, 33, 41-54.	0.4	44
100	Experimental Support for <i>Multiple-Locus</i> Complementary Sex Determination in the Parasitoid <i>Cotesia vestalis</i> . Genetics, 2008, 180, 1525-1535.	2.9	44
101	Reward Value Determines Memory Consolidation in Parasitic Wasps. PLoS ONE, 2012, 7, e39615.	2.5	44
102	A learning-related variation in electroantennogram responses of a parasitic wasp. Physiological Entomology, 1990, 15, 243-247.	1.5	43
103	Responses of a generalist and a specialist parasitoid (Hymenoptera: Eucoilidae) to Drosophilid larval kairomones. Journal of Insect Behavior, 1993, 6, 615-624.	0.7	43
104	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science, 2013, 69, 302-311.	3.4	43
105	Olfactory Microhabitat Selection in Leptopilina Heterotoma (Thomson) (Hym.: Eucoilidae), a Parasitoid of Drosophilidae. Animal Biology, 1984, 35, 497-504.	0.4	42
106	A Comparative Functional Approach to the Host Detection Behaviour of Parasitic Wasps. 2. A Quantitative Study on Eight Eucoilid Species. Oikos, 1985, 44, 487.	2.7	42
107	Effects of experience on parasitoid movement in odour plumes. Physiological Entomology, 1992, 17, 90-96.	1.5	42
108	Foraging behaviour at the fourth trophic level: a comparative study of host location in aphid hyperparasitoids. Entomologia Experimentalis Et Applicata, 2005, 114, 107-117.	1.4	42

#	Article	IF	CITATIONS
109	Temporal dynamics of herbivore-induced responses in Brassica juncea and their effect on generalist and specialist herbivores. Entomologia Experimentalis Et Applicata, 2011, 139, 215-225.	1.4	42
110	From toilet to agriculture: Fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resources, Conservation and Recycling, 2020, 161, 104924.	10.8	42
111	Importance of host feeding for parasitoids that attack honeydew-producing hosts. Entomologia Experimentalis Et Applicata, 2005, 117, 147-154.	1.4	41
112	Effect of a Nonhost Plant on the Location Behavior of Two Parasitoids: The Tritrophic System of <i>Cotesia</i> spp. (Hymenoptera: Braconidae), <i>Pieris rapae</i> (Lepidoptera: Pieridae), and <i>Brassica oleraceae</i> . Environmental Entomology, 2003, 32, 163-174.	1.4	40
113	Role of volatiles emitted by host and non-host plants in the foraging behaviour of Dentichasmias busseolae , a pupal parasitoid of the spotted stemborer Chilo partellus. Entomologia Experimentalis Et Applicata, 2003, 107, 1-9.	1.4	39
114	Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host?parasitoid interactions. Journal of Animal Ecology, 2007, 76, 845-853.	2.8	39
115	Natural variation in learning and memory dynamics studied by artificial selection on learning rate in parasitic wasps. Animal Behaviour, 2011, 81, 325-333.	1.9	38
116	Olfactory Microhabitat Location in Some Eucoilid and Alysiine Species (Hymenoptera), Larval Parasitoids of Diptera. Animal Biology, 1984, 35, 720-730.	0.4	37
117	Geographic variation in host selection behaviour and reproductive success in the stemborer parasitoid <i>Cotesia flavipes</i> (Hymenoptera: Braconidae). Bulletin of Entomological Research, 1997, 87, 515-524.	1.0	36
118	Behaviour of male and female parasitoids in the field: influence of patch size, host density, and habitat complexity. Ecological Entomology, 2010, 35, 341-351.	2.2	36
119	Aggregation pheromones ofDrosophila immigrans, D. phalerata, andD. subobscura. Journal of Chemical Ecology, 1996, 22, 1835-1844.	1.8	35
120	Do parasitized caterpillars protect their parasitoids from hyperparasitoids? A test of the â€~usurpation hypothesis'. Animal Behaviour, 2008, 76, 701-708.	1.9	35
121	Nutritional ecology of the interaction between larvae of the gregarious ectoparasitoid, Muscidifurax raptorellus (Hymenoptera: Pteromalidae), and their pupal host, Musca domestica (Diptera: Muscidae). Physiological Entomology, 1998, 23, 113-120.	1.5	34
122	Highâ€ŧhroughput olfactory conditioning and memory retention test show variation in <i>Nasonia</i> parasitic wasps. Genes, Brain and Behavior, 2012, 11, 879-887.	2.2	34
123	Variation in herbivoreâ€induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Functional Ecology, 2013, 27, 1107-1116.	3.6	32
124	Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours. Oecologia, 2015, 179, 353-361.	2.0	31
125	The influence of previous foraging experience on microhabitat acceptance inLeptopilina heterotoma. Journal of Insect Behavior, 1988, 1, 387-392.	0.7	30
126	Nonlinear effects of plant root and shoot jasmonic acid application on the performance of <i>Pieris brassicae</i> and its parasitoid <i>Cotesia glomerata</i> . Functional Ecology, 2009, 23, 496-505.	3.6	29

#	Article	IF	CITATIONS
127	Remarkable similarity in body mass of a secondary hyperparasitoidLysibia nana and its primary parasitoid hostCotesia glomerata emerging from cocoons of comparable size. Archives of Insect Biochemistry and Physiology, 2006, 61, 170-183.	1.5	28
128	Impact of Botanical Pesticides Derived from Melia azedarach and Azadirachta indica Plants on the Emission of Volatiles that Attract Parasitoids of the Diamondback Moth to Cabbage Plants. Journal of Chemical Ecology, 2006, 32, 325-349.	1.8	27
129	Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Communications Biology, 2021, 4, 104.	4.4	27
130	Host feeding in insect parasitoids: why destructively feed upon a host that excretes an alternative?. Entomologia Experimentalis Et Applicata, 2004, 112, 207-215.	1.4	25
131	Dealing with double trouble: consequences of single and double herbivory in Brassica juncea. Chemoecology, 2013, 23, 71-82.	1.1	25
132	A novel indirect defence in Brassicaceae: Structure and function of extrafloral nectaries in <i>Brassica juncea</i> . Plant, Cell and Environment, 2013, 36, 528-541.	5.7	25
133	A tritrophic approach to the preference–performance hypothesis involving an exotic and a native plant. Biological Invasions, 2013, 15, 2387-2401.	2.4	25
134	An ecogenomic analysis of herbivoreâ€induced plant volatiles in <i><scp>B</scp>rassica juncea</i> . Molecular Ecology, 2013, 22, 6179-6196.	3.9	25
135	Variation in plant defences among populations of a rangeâ€expanding plant: consequences for trophic interactions. New Phytologist, 2014, 204, 989-999.	7.3	25
136	Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae). Journal of Evolutionary Biology, 2007, 20, 340-348.	1.7	22
137	Fitness of two sibling species of Asobara (Braconidae:Alysiinae), larval parasitoids of Drosophilidae in different microhabitats. Ecological Entomology, 1984, 9, 345-354.	2.2	21
138	Clutch size in a larval-pupal endoparasitoid. Oecologia, 1993, 95, 410-415.	2.0	21
139	Reproduction now or later: optimal host-handling strategies in the whitefly parasitoidEncarsia formosa. Oikos, 2004, 106, 117-130.	2.7	21
140	Host recognition byPimpla instigator F. (Hymenoptera: Ichneumonidae): Preferences and learned responses. Journal of Insect Behavior, 1993, 6, 1-11.	0.7	20
141	The †̃usurpation hypothesis' revisited: dying caterpillar repels attack from a hyperparasitoid wasp. Animal Behaviour, 2011, 81, 1281-1287.	1.9	20
142	Introgression study reveals two quantitative trait loci involved in interspecific variation in memory retention among Nasonia wasp species. Heredity, 2014, 113, 542-550.	2.6	20
143	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	20
144	Gustatory response and appetitive learning in Microplitis croceipes in relation to sugar type and concentration. Animal Biology, 2006, 56, 193-203.	1.0	18

#	Article	IF	CITATIONS
145	Development of a hyperparasitoid wasp in different stages of its primary parasitoid and secondary herbivore hosts. Journal of Insect Physiology, 2012, 58, 1463-1468.	2.0	18
146	Optimal Resource Allocation to Survival and Reproduction in Parasitic Wasps Foraging in Fragmented Habitats. PLoS ONE, 2012, 7, e38227.	2.5	18
147	Learning-induced gene expression in the heads of two Nasonia species that differ in long-term memory formation. BMC Genomics, 2015, 16, 162.	2.8	18
148	Evolutionary Aspects of Plant—Carnivore Interactions. Novartis Foundation Symposium, 1999, 223, 3-20.	1.1	18
149	Effects of an invasive plant on the performance of two parasitoids with different host exploitation strategies. Biological Control, 2012, 62, 213-220.	3.0	17
150	Response To Kairomones By Some Alysiine and Eucoilid Parasitoid Species (Hymenoptera). Animal Biology, 1984, 35, 486-496.	0.4	16
151	Close-Range Host Searching Behavior of the Stemborer Parasitoids Cotesia sesamiae and Dentichasmias busseolae: Influence of a Non-Host Plant Melinis minutiflora. Journal of Insect Behavior, 2005, 18, 149-169.	0.7	16
152	Unravelling reward value: the effect of host value on memory retention in Nasonia parasitic wasps. Animal Behaviour, 2014, 96, 1-7.	1.9	15
153	The Influence of Host Site Experience on Subsequent Flight Behavior in Microplitis croceipes (Cresson) (Hymenoptera: Braconidae). Biological Control, 1993, 3, 75-79.	3.0	14
154	Integrating Parasitoid Olfactory Conditioning in Augmentative Biological Control: Potential Impact, Possibilities, and Challenges. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	14
155	Honeydew composition and its effect on lifeâ€history parameters of hyperparasitoids. Ecological Entomology, 2020, 45, 278-289.	2.2	14
156	Learning in insects: From behaviour to brain. Animal Biology, 2006, 56, 121-124.	1.0	13
157	Quantifying the impact of above―and belowground higher trophic levels on plant and herbivore performance by modeling ¹ . Oikos, 2009, 118, 981-990.	2.7	13
158	Effects of molasses grass, Melinis minutiflora volatiles on the foraging behavior of the cereal stemborer parasitoid, Cotesia sesamiae. Journal of Chemical Ecology, 2003, 29, 731-745.	1.8	11
159	Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp. Journal of Insect Behavior, 2006, 19, 155-170.	0.7	11
160	Linking Spatial Processes to Lifeâ€History Evolution of Insect Parasitoids. American Naturalist, 2005, 166, E62-E74.	2.1	10
161	Enter the matrix: How to analyze the structure of behavior. Behavior Research Methods, 2006, 38, 357-363.	4.0	10
162	Effect of belowground herbivory on parasitoid associative learning of plant odours. Oikos, 2013, 122, 1094-1100.	2.7	10

#	Article	IF	CITATIONS
163	Multi amera field monitoring reveals costs of learning for parasitoid foraging behaviour. Journal of Animal Ecology, 2021, 90, 1635-1646.	2.8	10
164	Competition and brood reduction: testing alternative models of clutch-size evolution in parasitoids. Behavioral Ecology, 2009, 20, 403-409.	2.2	9
165	Costs of Persisting Unreliable Memory: Reduced Foraging Efficiency for Free-Flying Parasitic Wasps in a Wind Tunnel. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	9
166	CREB expression in the brains of two closely related parasitic wasp species that differ in longâ€ŧerm memory formation. Insect Molecular Biology, 2010, 19, 367-379.	2.0	8
167	Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps. Frontiers in Behavioral Neuroscience, 2015, 9, 255.	2.0	8
168	Automated high-throughput individual tracking system for insect behavior: Applications on memory retention in parasitic wasps. Journal of Neuroscience Methods, 2018, 309, 208-217.	2.5	8
169	Field research for the authorisation of pesticides. Ecotoxicology, 2000, 9, 377-381.	2.4	7
170	Associative learning of host presence in nonâ€host environments influences parasitoid foraging. Ecological Entomology, 2018, 43, 318-325.	2.2	7
171	Root and shoot jasmonic acid induction differently affects the foraging behavior of Cotesia glomerata under semi-field conditions. BioControl, 2012, 57, 387-395.	2.0	6
172	Integrating Insect Life History and Food Plant Phenology: Flexible Maternal Choice Is Adaptive. International Journal of Molecular Sciences, 2016, 17, 1263.	4.1	6
173	Effects of temperature and food source on reproduction and longevity of aphid hyperparasitoids of the genera Dendrocerus and Asaphes. BioControl, 2019, 64, 277-290.	2.0	6
174	Comparing and contrasting life history variation in four aphid hyperparasitoids. Ecological Entomology, 2017, 42, 325-335.	2.2	5
175	Natural history of whitefly in Costa Rica: an evolutionary starting point. Ecological Entomology, 2004, 29, 150-163.	2.2	4
176	On-Site Blackwater Treatment Fosters Microbial Groups and Functions to Efficiently and Robustly Recover Carbon and Nutrients. Microorganisms, 2021, 9, 75.	3.6	4
177	Do plant volatiles confuse rather than guide foraging behavior of the aphid hyperparasitoid Dendrocerus aphidum?. Chemoecology, 2020, 30, 315-325.	1.1	3
178	Memory extinction and spontaneous recovery shaping parasitoid foraging behavior. Behavioral Ecology, 2021, 32, 952-960.	2.2	2
179	All mycorrhizas are not equal. Trends in Ecology and Evolution, 2001, 16, 672-673.	8.7	1
180	Preface by Louise E.M. Vet. Annual Review of Entomology, 2007, 52, .	11.8	0

#	Article	IF	CITATIONS
181	Learning from nature: need, challenge and implementation of eco-technology. Communications in Agricultural and Applied Biological Sciences, 2011, 76, 85-8.	0.0	0
182	Effects of oviposition in a nonâ€host species on foraging behaviour of the parasitoid <i>Cotesia glomerata</i> . Ecological Entomology, 0, , .	2.2	0