Gonzalo Navarro

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3490288/gonzalo-navarro-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,519 81 335 39 h-index g-index citations papers 6.79 10,301 1.7 375 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
335	Engineering Practical Lempel-Ziv Tries. <i>Journal of Experimental Algorithmics</i> , 2021 , 26, 1-47	1.1	
334	Range Majorities and Minorities in Arrays. <i>Algorithmica</i> , 2021 , 83, 1707-1733	0.9	
333	Indexing Highly Repetitive String Collections, Part II. ACM Computing Surveys, 2021, 54, 1-32	13.4	5
332	Indexing Highly Repetitive String Collections, Part I. ACM Computing Surveys, 2021, 54, 1-31	13.4	7
331	Faster repetition-aware compressed suffix trees based on Block Trees. <i>Information and Computation</i> , 2021 , 104749	0.8	2
330	Grammar-compressed indexes with logarithmic search time. <i>Journal of Computer and System Sciences</i> , 2021 , 118, 53-74	1	3
329	Worst-Case Optimal Graph Joins in Almost No Space 2021 ,		5
328	An index for moving objects with constant-time access to their compressed trajectories. <i>International Journal of Geographical Information Science</i> , 2021 , 35, 1392-1424	4.1	1
327	Compact structure for sparse undirected graphs based on a clique graph partition. <i>Information Sciences</i> , 2021 , 544, 485-499	7.7	5
326	Block trees. Journal of Computer and System Sciences, 2021, 117, 1-22	1	5
325	. IEEE Transactions on Information Theory, 2021 , 67, 1008-1026	2.8	6
324	PFP Compressed Suffix Trees. 2021, 2021, 60-72		4
323	On Stricter Reachable Repetitiveness Measures. Lecture Notes in Computer Science, 2021 , 193-206	0.9	1
322	An LMS-Based Grammar Self-index with Local Consistency Properties. <i>Lecture Notes in Computer Science</i> , 2021 , 100-113	0.9	0
321	A grammar compressor for collections of reads with applications to the construction of the BWT 2021 ,		2
320	Optimal-Time Dictionary-Compressed Indexes. ACM Transactions on Algorithms, 2021, 17, 1-39	1.2	13
319	Lempel Z iv-Like Parsing in Small Space. <i>Algorithmica</i> , 2020 , 82, 3195-3215	0.9	5

318	Compressed Dynamic Range Majority and Minority Data Structures. <i>Algorithmica</i> , 2020 , 82, 2063-2086	0.9	1
317	Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space. <i>Journal of the ACM</i> , 2020 , 67, 1-54	2	37
316	Contextual Pattern Matching. Lecture Notes in Computer Science, 2020, 3-10	0.9	
315	Practical Random Access to SLP-Compressed Texts. <i>Lecture Notes in Computer Science</i> , 2020 , 221-231	0.9	4
314	Towards a Definitive Measure of Repetitiveness. Lecture Notes in Computer Science, 2020, 207-219	0.9	14
313	Fast Compressed Self-indexes with Deterministic Linear-Time Construction. <i>Algorithmica</i> , 2020 , 82, 316	5-3337	2
312	Fast and compact planar embeddings. Computational Geometry: Theory and Applications, 2020, 89, 1016	5 30 4	3
311	On Dynamic Succinct Graph Representations 2020 ,		2
310	Tree path majority data structures. <i>Theoretical Computer Science</i> , 2020 , 833, 107-119	1.1	
309	Parallel computation of the Burrows Wheeler Transform in compact space. <i>Theoretical Computer Science</i> , 2020 , 812, 123-136	1.1	2
308	Ranked document selection. <i>Theoretical Computer Science</i> , 2020 , 812, 149-159	1.1	0
307	Extending general compact querieable representations to GIS applications. <i>Information Sciences</i> , 2020 , 506, 196-216	7.7	5
306	Cell cycle and protein complex dynamics in discovering signaling pathways. <i>Journal of Bioinformatics and Computational Biology</i> , 2019 , 17, 1950011	1	
305	GraCT: A Grammar-based Compressed Index for Trajectory Data. <i>Information Sciences</i> , 2019 , 483, 106-1	3 5 .7	12
304	Path queries on functions. <i>Theoretical Computer Science</i> , 2019 , 770, 34-50	1.1	1
303	Compressed filesystem for managing large genome collections. <i>Bioinformatics</i> , 2019 , 35, 4120-4128	7.2	O
302	On the reproducibility of experiments of indexing repetitive document collections. <i>Information Systems</i> , 2019 , 83, 181-194	2.7	2
301	Document listing on repetitive collections with guaranteed performance. <i>Theoretical Computer Science</i> , 2019 , 772, 58-72	1.1	5

300	Lempel I iv compressed structures for document retrieval. <i>Information and Computation</i> , 2019 , 265, 1-25	0.8	О
299	Tunneling on Wheeler Graphs 2019 ,		5
298	Improved Compressed String Dictionaries 2019 ,		2
297	Fast, Small, and Simple Document Listing on Repetitive Text Collections. <i>Lecture Notes in Computer Science</i> , 2019 , 482-498	0.9	2
296	Faster Dynamic Compressed d-ary Relations. Lecture Notes in Computer Science, 2019, 419-433	0.9	1
295	Rpair: Rescaling RePair with Rsync. Lecture Notes in Computer Science, 2019, 35-44	0.9	9
294	RePair and All Irreducible Grammars are Upper Bounded by High-Order Empirical Entropy. <i>IEEE Transactions on Information Theory</i> , 2019 , 65, 3160-3164	2.8	12
293	Universal compressed text indexing. <i>Theoretical Computer Science</i> , 2019 , 762, 41-50	1.1	19
292	Optimal-Time Text Indexing in BWT-runs Bounded Space 2018 , 1459-1477		24
291	On the Approximation Ratio of Lempel-Ziv Parsing. Lecture Notes in Computer Science, 2018, 490-503	0.9	6
29 0	Relative Suffix Trees. Computer Journal, 2018, 61, 773-788	1.3	9
289	An empirical evaluation of intrinsic dimension estimators. <i>Information Systems</i> , 2017 , 64, 206-218	2.7	11
288	Improved Range Minimum Queries. Journal of Discrete Algorithms, 2017, 43, 72-80		7
287	A succinct data structure for self-indexing ternary relations. <i>Journal of Discrete Algorithms</i> , 2017 , 43, 38-53		9
286	Time-Optimal Top-\$k\$ Document Retrieval. SIAM Journal on Computing, 2017, 46, 80-113	1.1	9
285	Compressed Dynamic Range Majority Data Structures 2017 ,		2
284	Top-k Term-Proximity in Succinct Space. <i>Algorithmica</i> , 2017 , 78, 379-393	0.9	1
283	Practical Compact Indexes for Top- k Document Retrieval. <i>Journal of Experimental Algorithmics</i> , 2017 , 22, 1-37	1.1	

(2016-2017)

282	Compressed representation of dynamic binary relations with applications. <i>Information Systems</i> , 2017 , 69, 106-123	2.7	10
281	Document retrieval on repetitive string collections. <i>Information Retrieval</i> , 2017 , 20, 253-291	1.8	10
280	Asymptotically Optimal Encodings of Range Data Structures for Selection and Top- k Queries. <i>ACM Transactions on Algorithms</i> , 2017 , 13, 1-31	1.2	4
279	Inverted Treaps. ACM Transactions on Information Systems, 2017, 35, 1-45	4.8	1
278	Space-Efficient Construction of Compressed Indexes in Deterministic Linear Time 2017,		10
277	Grammar compressed sequences with rank/select support. Journal of Discrete Algorithms, 2017, 43, 54-	·71	1
276	Protein complex prediction via dense subgraphs and false positive analysis. PLoS ONE, 2017, 12, e0183	460 7	6
275	Efficient Compression and Indexing of Trajectories. Lecture Notes in Computer Science, 2017, 103-115	0.9	2
274	A Self-index on Block Trees. Lecture Notes in Computer Science, 2017, 278-289	0.9	4
273	LZ78 Compression in Low Main Memory Space. Lecture Notes in Computer Science, 2017, 38-50	0.9	4
272	Text Index Compression 2017 , 1-6		
271	Optimal Encodings for Range Majority Queries. <i>Algorithmica</i> , 2016 , 74, 1082-1098	0.9	4
270	New dynamic metric indices for secondary memory. <i>Information Systems</i> , 2016 , 59, 48-78	2.7	10
269	Practical compressed string dictionaries. <i>Information Systems</i> , 2016 , 56, 73-108	2.7	29
268	Faster Compressed Suffix Trees for Repetitive Collections. <i>Journal of Experimental Algorithmics</i> , 2016 , 21, 1-38	1.1	10
267	GraCT: A Grammar Based Compressed Representation of Trajectories. <i>Lecture Notes in Computer Science</i> , 2016 , 218-230	0.9	3
266	Efficient and Compact Representations of Some Non-canonical Prefix-Free Codes. <i>Lecture Notes in Computer Science</i> , 2016 , 50-60	0.9	1
265	Compact Data Structures: A Practical Approach 2016 ,		87

264	Practical Dynamic Entropy-Compressed Bitvectors with Applications. <i>Lecture Notes in Computer Science</i> , 2016 , 105-117	0.9	4
263	Improved Range Minimum Queries 2016 ,		4
262	Reporting consecutive substring occurrences under bounded gap constraints. <i>Theoretical Computer Science</i> , 2016 , 638, 108-111	1.1	0
261	Simple and efficient fully-functional succinct trees. <i>Theoretical Computer Science</i> , 2016 , 656, 135-145	1.1	7
260	Aggregated 2D range queries on clustered points. <i>Information Systems</i> , 2016 , 60, 34-49	2.7	8
259	Universal indexes for highly repetitive document collections. <i>Information Systems</i> , 2016 , 61, 1-23	2.7	18
258	Document Counting in Compressed Space 2015 ,		3
257	Faster Compressed Quadtrees 2015 ,		4
256	Bottom-k document retrieval. <i>Journal of Discrete Algorithms</i> , 2015 , 32, 69-74		2
255	Near neighbor searching with K nearest references. <i>Information Systems</i> , 2015 , 51, 43-61	2.7	22
254	Improved and extended locating functionality on compressed suffix arrays. <i>Journal of Discrete Algorithms</i> , 2015 , 32, 53-63		5
253	An Empirical Evaluation of Intrinsic Dimension Estimators. Lecture Notes in Computer Science, 2015, 125	-1637	
252	A Compact RDF Store Using Suffix Arrays. Lecture Notes in Computer Science, 2015, 103-115	0.9	11
251	Optimal Lower and Upper Bounds for Representing Sequences. <i>ACM Transactions on Algorithms</i> , 2015 , 11, 1-21	1.2	34
250	. IEEE Transactions on Information Theory, 2015 , 61, 4999-5011	2.8	6
249	Locally Compressed Suffix Arrays. Journal of Experimental Algorithmics, 2015, 19,	1.1	8
248	The wavelet matrix: An efficient wavelet tree for large alphabets. <i>Information Systems</i> , 2015 , 47, 15-32	2.7	35
247	Fast in-memory XPath search using compressed indexes. <i>Software - Practice and Experience</i> , 2015 , 45, 399-434	2.5	8

246	Improved Single-Term Top-k Document Retrieval 2015 , 24-32		2
245	Compressed vertical partitioning for efficient RDF management. <i>Knowledge and Information Systems</i> , 2015 , 44, 439-474	2.4	30
244	General Document Retrieval in Compact Space. Journal of Experimental Algorithmics, 2015, 19, 1-46	1.1	3
243	Compressed representations for web and social graphs. <i>Knowledge and Information Systems</i> , 2014 , 40, 279-313	2.4	27
242	Spaces, Trees, and Colors. ACM Computing Surveys, 2014, 46, 1-47	13.4	38
241	Optimal Dynamic Sequence Representations. SIAM Journal on Computing, 2014, 43, 1781-1806	1.1	24
240	Interleaved K2-Tree: Indexing and Navigating Ternary Relations 2014,		3
239	Fast Fully-Compressed Suffix Trees 2014 ,		6
238	Distributed text search using suffix arrays. Parallel Computing, 2014, 40, 471-495	1	7
237	New space/time tradeoffs for top-k document retrieval on sequences. <i>Theoretical Computer Science</i> , 2014 , 542, 83-97	1.1	9
236	Compact representation of Web graphs with extended functionality. <i>Information Systems</i> , 2014 , 39, 15	2- <u>1</u> 1. 7 4	75
235	Encodings for Range Majority Queries. Lecture Notes in Computer Science, 2014, 262-272	0.9	2
234	Fully Functional Static and Dynamic Succinct Trees. ACM Transactions on Algorithms, 2014, 10, 1-39	1.2	80
233	Alphabet-Independent Compressed Text Indexing. ACM Transactions on Algorithms, 2014, 10, 1-19	1.2	24
232	Grammar Compressed Sequences with Rank/Select Support. <i>Lecture Notes in Computer Science</i> , 2014 , 31-44	0.9	5
231	XXS. ACM Transactions on Information Systems, 2014 , 32, 1-37	4.8	O
230	Wavelet trees for all. <i>Journal of Discrete Algorithms</i> , 2014 , 25, 2-20		61
229	Maximum-weight planar boxes in O(n2) time (and better). <i>Information Processing Letters</i> , 2014 , 114, 43	7-4.\$5	15

228	Efficient Fully-Compressed Sequence Representations. <i>Algorithmica</i> , 2014 , 69, 232-268	0.9	26
227	K2-Treaps: Range Top-k Queries in Compact Space. <i>Lecture Notes in Computer Science</i> , 2014 , 215-226	0.9	2
226	Efficient Compressed Indexing for Approximate Top-k String Retrieval. <i>Lecture Notes in Computer Science</i> , 2014 , 18-30	0.9	3
225	Top-(k) Term-Proximity in Succinct Space. Lecture Notes in Computer Science, 2014, 169-180	0.9	1
224	Document Retrieval on Repetitive Collections. <i>Lecture Notes in Computer Science</i> , 2014 , 725-736	0.9	4
223	Dynamic List of Clusters in Secondary Memory. Lecture Notes in Computer Science, 2014, 94-105	0.9	2
222	Improved and Extended Locating Functionality on Compressed Suffix Arrays. <i>Lecture Notes in Computer Science</i> , 2014 , 436-447	0.9	
221	Approximate String Matching 2014 , 1-5		2
220	Compact binary relation representations with rich functionality. <i>Information and Computation</i> , 2013 , 232, 19-37	0.8	17
219	On compressing and indexing repetitive sequences. <i>Theoretical Computer Science</i> , 2013 , 483, 115-133	1.1	83
218	On compressing permutations and adaptive sorting. <i>Theoretical Computer Science</i> , 2013 , 513, 109-123	1.1	13
217	Faster Compact Top-k Document Retrieval 2013 ,		14
216	Space-efficient data-analysis queries on grids. <i>Theoretical Computer Science</i> , 2013 , 482, 60-72	1.1	26
215	Space-efficient representations of rectangle datasets supporting orthogonal range querying. <i>Information Systems</i> , 2013 , 38, 635-655	2.7	15
214	Colored range queries and document retrieval. <i>Theoretical Computer Science</i> , 2013 , 483, 36-50	1.1	18
213	Improved compressed indexes for full-text document retrieval. <i>Journal of Discrete Algorithms</i> , 2013 , 18, 3-13		30
212	Succinct nearest neighbor search. <i>Information Systems</i> , 2013 , 38, 1019-1030	2.7	23
211	DACs: Bringing direct access to variable-length codes. <i>Information Processing and Management</i> , 2013 , 49, 392-404	6.3	61

210	Faster and smaller inverted indices with treaps 2013 ,		17
209	Compressing Huffman Models on Large Alphabets 2013,		5
208	Practical Compressed Suffix Trees. <i>Algorithms</i> , 2013 , 6, 319-351	1.8	22
207	Optimal Dynamic Sequence Representations 2013,		11
206	Compact Querieable Representations of Raster Data. Lecture Notes in Computer Science, 2013, 96-108	0.9	19
205	A Lempel-Ziv Compressed Structure for Document Listing. <i>Lecture Notes in Computer Science</i> , 2013 , 116	5-12 ₉ 8	6
204	Faster Top-k Document Retrieval in Optimal Space. Lecture Notes in Computer Science, 2013, 255-262	0.9	4
203	Document Listing on Repetitive Collections. Lecture Notes in Computer Science, 2013, 107-119	0.9	10
202	Better Space Bounds for Parameterized Range Majority and Minority. <i>Lecture Notes in Computer Science</i> , 2013 , 121-132	0.9	11
201	Encodings for Range Selection and Top-k Queries. Lecture Notes in Computer Science, 2013, 553-564	0.9	6
200	Top-k Document Retrieval in Compact Space and Near-Optimal Time. <i>Lecture Notes in Computer Science</i> , 2013 , 394-404	0.9	2
199	New algorithms on wavelet trees and applications to information retrieval. <i>Theoretical Computer Science</i> , 2012 , 426-427, 25-41	1.1	66
198	String matching with alphabet sampling. Journal of Discrete Algorithms, 2012, 11, 37-50		14
197	Stronger Lempel-Ziv Based Compressed Text Indexing. <i>Algorithmica</i> , 2012 , 62, 54-101	0.9	27
196	Boosting Text Compression with Word-Based Statistical Encoding. <i>Computer Journal</i> , 2012 , 55, 111-131	1.3	6
195	Implicit indexing of natural language text by reorganizing bytecodes. <i>Information Retrieval</i> , 2012 , 15, 527-557	1.8	18
194	Compressed Dynamic Binary Relations 2012 ,		11
193	LRM-Trees: Compressed indices, adaptive sorting, and compressed permutations. <i>Theoretical Computer Science</i> , 2012 , 459, 26-41	1.1	9

192	Word-based self-indexes for natural language text. <i>ACM Transactions on Information Systems</i> , 2012 , 30, 1-34	4.8	32
191	Top-k Document Retrieval in Optimal Time and Linear Space 2012 ,		30
190	Space-Efficient Top-k Document Retrieval. Lecture Notes in Computer Science, 2012, 307-319	0.9	12
189	Sorted Range Reporting. <i>Lecture Notes in Computer Science</i> , 2012 , 271-282	0.9	18
188	Wavelet Trees for All. Lecture Notes in Computer Science, 2012, 2-26	0.9	24
187	New Lower and Upper Bounds for Representing Sequences. <i>Lecture Notes in Computer Science</i> , 2012 , 181-192	0.9	16
186	Ranked Document Retrieval in (Almost) No Space. Lecture Notes in Computer Science, 2012, 155-160	0.9	2
185	The Wavelet Matrix. Lecture Notes in Computer Science, 2012 , 167-179	0.9	15
184	Improved Grammar-Based Compressed Indexes. Lecture Notes in Computer Science, 2012, 180-192	0.9	28
183	Compressed Representation of Web and Social Networks via Dense Subgraphs. <i>Lecture Notes in Computer Science</i> , 2012 , 264-276	0.9	10
182	Indexing Highly Repetitive Collections. Lecture Notes in Computer Science, 2012, 274-279	0.9	20
181	Compressed Suffix Trees for Repetitive Texts. Lecture Notes in Computer Science, 2012, 30-41	0.9	3
180	Self-Indexed Grammar-Based Compression. Fundamenta Informaticae, 2011, 111, 313-337	1	34
179	On-line approximate string matching with bounded errors. <i>Theoretical Computer Science</i> , 2011 , 412, 63	35 9. 637	701
178	Improving semistatic compression via phrase-based modeling. <i>Information Processing and Management</i> , 2011 , 47, 545-559	6.3	1
177	Space-efficient construction of Lempelliv compressed text indexes. <i>Information and Computation</i> , 2011 , 209, 1070-1102	0.8	14
176	Fully dynamic metric access methods based on hyperplane partitioning. <i>Information Systems</i> , 2011 , 36, 734-747	2.7	23
175	Fully compressed suffix trees. ACM Transactions on Algorithms, 2011 , 7, 1-34	1.2	32

174	STRONGER QUICKHEAPS. International Journal of Foundations of Computer Science, 2011 , 22, 945-969	0.6	1
173	Compressed String Dictionaries. Lecture Notes in Computer Science, 2011, 136-147	0.9	18
172	Practical Compressed Document Retrieval. Lecture Notes in Computer Science, 2011, 193-205	0.9	18
171	Self-indexing Based on LZ77. Lecture Notes in Computer Science, 2011 , 41-54	0.9	32
170	Alphabet-Independent Compressed Text Indexing. Lecture Notes in Computer Science, 2011, 748-759	0.9	19
169	Improved Compressed Indexes for Full-Text Document Retrieval. <i>Lecture Notes in Computer Science</i> , 2011 , 386-397	0.9	7
168	Space-Efficient Data-Analysis Queries on Grids. Lecture Notes in Computer Science, 2011, 323-332	0.9	5
167	Fully-Functional Succinct Trees 2010 ,		61
166	Dynamic lightweight text compression. ACM Transactions on Information Systems, 2010, 28, 1-32	4.8	17
165	LZ77-Like Compression with Fast Random Access 2010 ,		30
164	Succinct Trees in Practice 2010 , 84-97		43
163	Fast and Compact Web Graph Representations. ACM Transactions on the Web, 2010, 4, 1-31	3.2	50
162	A New Searchable Variable-to-Variable Compressor 2010 ,		2
161	Fast in-memory XPath search using compressed indexes 2010 ,		16
160	Storage and retrieval of highly repetitive sequence collections. <i>Journal of Computational Biology</i> , 2010 , 17, 281-308	1.7	121
159	Compressed q-Gram Indexing for Highly Repetitive Biological Sequences 2010,		24
158	Fundamentals of the problem. SIGSPATIAL Special, 2010, 2, 2-7	2.3	
157	On Sorting, Heaps, and Minimum Spanning Trees. <i>Algorithmica</i> , 2010 , 57, 585-620	0.9	5

156	Compact Rich-Functional Binary Relation Representations. Lecture Notes in Computer Science, 2010, 170	0-1.83	12
155	Extended Compact Web Graph Representations. Lecture Notes in Computer Science, 2010, 77-91	0.9	20
154	A Fun Application of Compact Data Structures to Indexing Geographic Data. <i>Lecture Notes in Computer Science</i> , 2010 , 77-88	0.9	7
153	Practical Compressed Suffix Trees. <i>Lecture Notes in Computer Science</i> , 2010 , 94-105	0.9	15
152	Top-k Ranked Document Search in General Text Databases. <i>Lecture Notes in Computer Science</i> , 2010 , 194-205	0.9	28
151	Dual-Sorted Inverted Lists. Lecture Notes in Computer Science, 2010, 309-321	0.9	15
150	Colored Range Queries and Document Retrieval. Lecture Notes in Computer Science, 2010, 67-81	0.9	19
149	Range Queries over a Compact Representation of Minimum Bounding Rectangles. <i>Lecture Notes in Computer Science</i> , 2010 , 33-42	0.9	2
148	Alphabet Partitioning for Compressed Rank/Select and Applications. <i>Lecture Notes in Computer Science</i> , 2010 , 315-326	0.9	27
147	Fast and Compact Prefix Codes. <i>Lecture Notes in Computer Science</i> , 2010 , 419-427	0.9	4
146	Approximate String Matching with Compressed Indexes. <i>Algorithms</i> , 2009 , 2, 1105-1136	1.8	23
145	Implementing the LZ-index. Journal of Experimental Algorithmics, 2009, 13,	1.1	9
144	Compressed text indexes. Journal of Experimental Algorithmics, 2009, 13,	1.1	60
143	Improving the space cost of k-NN search in metric spaces by using distance estimators. <i>Multimedia Tools and Applications</i> , 2009 , 41, 215-233	2.5	9
142	Rank/select on dynamic compressed sequences and applications. <i>Theoretical Computer Science</i> , 2009 , 410, 4414-4422	1.1	21
141	Faster entropy-bounded compressed suffix trees. <i>Theoretical Computer Science</i> , 2009 , 410, 5354-5364	1.1	64
140	Speeding up spatial approximation search in metric spaces. <i>Journal of Experimental Algorithmics</i> , 2009 , 14,	1.1	7
139	EGNAT: A Fully Dynamic Metric Access Method for Secondary Memory 2009,		4

138	Analyzing Metric Space Indexes: What For? 2009 ,		19
137	Dynamic Spatial Approximation Trees for Massive Data 2009,		15
136	Directly Addressable Variable-Length Codes. Lecture Notes in Computer Science, 2009, 122-130	0.9	19
135	Indexing Variable Length Substrings for Exact and Approximate Matching. <i>Lecture Notes in Computer Science</i> , 2009 , 214-221	0.9	6
134	k2-Trees for Compact Web Graph Representation. Lecture Notes in Computer Science, 2009, 18-30	0.9	48
133	Self-indexed Text Compression Using Straight-Line Programs. <i>Lecture Notes in Computer Science</i> , 2009 , 235-246	0.9	16
132	A Compressed Self-indexed Representation of XML Documents. <i>Lecture Notes in Computer Science</i> , 2009 , 273-284	0.9	2
131	A New Point Access Method Based on Wavelet Trees. Lecture Notes in Computer Science, 2009, 297-306	0.9	6
130	Effective proximity retrieval by ordering permutations. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2008 , 30, 1647-58	13.3	131
129	Word-Based Statistical Compressors as Natural Language Compression Boosters. <i>Proceedings of the Data Compression Conference</i> , 2008 ,		4
128	. Proceedings of the Data Compression Conference, 2008,		1
127	Re-pair Achieves High-Order Entropy. Proceedings of the Data Compression Conference, 2008,		11
126	Dynamic spatial approximation trees. Journal of Experimental Algorithmics, 2008, 12, 1-68	1.1	22
125	Dynamic entropy-compressed sequences and full-text indexes. <i>ACM Transactions on Algorithms</i> , 2008 , 4, 1-38	1.2	54
124	Reorganizing compressed text 2008,		20
123	New adaptive compressors for natural language text. <i>Software - Practice and Experience</i> , 2008 , 38, 1429	-1. 4 50	7
122	Speeding Up Pattern Matching by Text Sampling. Lecture Notes in Computer Science, 2008, 87-98	0.9	1
121	Indexed Hierarchical Approximate String Matching. Lecture Notes in Computer Science, 2008, 144-154	0.9	

120	An(other) Entropy-Bounded Compressed Suffix Tree 2008, 152-165		13
119	Self-indexing Natural Language. <i>Lecture Notes in Computer Science</i> , 2008 , 121-132	0.9	9
118	Run-Length Compressed Indexes Are Superior for Highly Repetitive Sequence Collections. <i>Lecture Notes in Computer Science</i> , 2008 , 164-175	0.9	24
117	Practical Rank/Select Queries over Arbitrary Sequences. <i>Lecture Notes in Computer Science</i> , 2008 , 176-1	87 .9	57
116	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478		5
115	Rank and select revisited and extended. <i>Theoretical Computer Science</i> , 2007 , 387, 332-347	1.1	88
114	t-Spanners for metric space searching. <i>Data and Knowledge Engineering</i> , 2007 , 63, 820-854	1.5	4
113	Rotation and lighting invariant template matching. <i>Information and Computation</i> , 2007 , 205, 1096-1113	0.8	7
112	Using structural contexts to compress semistructured text collections. <i>Information Processing and Management</i> , 2007 , 43, 769-790	6.3	10
111	A Lempel-Ziv Text Index on Secondary Storage. Lecture Notes in Computer Science, 2007, 83-94	0.9	8
110	Compressed representations of sequences and full-text indexes. <i>ACM Transactions on Algorithms</i> , 2007 , 3, 20	1.2	207
109	Compressed full-text indexes. ACM Computing Surveys, 2007, 39, 2	13.4	411
108	Compressed Text Indexes with Fast Locate. Lecture Notes in Computer Science, 2007, 216-227	0.9	35
107	A Fast and Compact Web Graph Representation 2007 , 118-129		16
106	Approximate String Matching with Lempel-Ziv Compressed Indexes 2007, 264-275		3
105	FLEXIBLE MUSIC RETRIEVAL IN SUBLINEAR TIME. <i>International Journal of Foundations of Computer Science</i> , 2006 , 17, 1345-1364	0.6	8
104	BIT-PARALLEL COMPUTATION OF LOCAL SIMILARITY SCORE MATRICES WITH UNITARY WEIGHTS. International Journal of Foundations of Computer Science, 2006 , 17, 1325-1344	0.6	4
103	A SIMPLE ALPHABET-INDEPENDENT FM-INDEX. <i>International Journal of Foundations of Computer Science</i> , 2006 , 17, 1365-1384	0.6	13

102	A metric index for approximate string matching. <i>Theoretical Computer Science</i> , 2006 , 352, 266-279	1.1	6
101	Lightweight natural language text compression. <i>Information Retrieval</i> , 2006 , 10, 1-33	1.8	49
100	Improving Semistatic Compression Via Pair-Based Coding 2006 , 124-134		2
99	Position-Restricted Substring Searching. Lecture Notes in Computer Science, 2006, 703-714	0.9	28
98	On the Least Cost for Proximity Searching in Metric Spaces. <i>Lecture Notes in Computer Science</i> , 2006 , 279-290	0.9	17
97	Practical Construction of k-Nearest Neighbor Graphs in Metric Spaces. <i>Lecture Notes in Computer Science</i> , 2006 , 85-97	0.9	26
96	Statistical Encoding of Succinct Data Structures. Lecture Notes in Computer Science, 2006, 294-305	0.9	21
95	Dynamic Entropy-Compressed Sequences and Full-Text Indexes. <i>Lecture Notes in Computer Science</i> , 2006 , 306-317	0.9	14
94	Reducing the Space Requirement of LZ-Index. Lecture Notes in Computer Science, 2006, 318-329	0.9	15
93	Modeling Text Databases 2005 , 1-25		3
92	Succinct Suffix Arrays Based on Run-Length Encoding. Lecture Notes in Computer Science, 2005, 45-56	0.9	19
91	Indexing text with approximate q-grams. <i>Journal of Discrete Algorithms</i> , 2005 , 3, 157-175		13
90	Transposition invariant string matching. <i>Journal of Algorithms</i> , 2005 , 56, 124-153		26
89	Sequential and indexed two-dimensional combinatorial template matching allowing rotations. <i>Theoretical Computer Science</i> , 2005 , 347, 239-275	1.1	6
88	New bounds on D-ary optimal codes. <i>Information Processing Letters</i> , 2005 , 96, 178-184	0.8	4
87	A compact space decomposition for effective metric indexing. <i>Pattern Recognition Letters</i> , 2005 , 26, 13	64 ./ 13	76 102
86	Bit-Parallel Witnesses and Their Applications to Approximate String Matching. <i>Algorithmica</i> , 2005 , 41, 203-231	0.9	18
85	New Techniques for Regular Expression Searching. <i>Algorithmica</i> , 2005 , 41, 89-116	0.9	25

84	LZgrep: a BoyerMoore string matching tool for ZivDempel compressed text. <i>Software - Practice and Experience</i> , 2005 , 35, 1107-1130	2.5	14
83	Efficiently decodable and searchable natural language adaptive compression 2005,		7
82	Increased bit-parallelism for approximate and multiple string matching. <i>Journal of Experimental Algorithmics</i> , 2005 , 10,	1.1	12
81	Compressing Dynamic Text Collections via Phrase-Based Coding. <i>Lecture Notes in Computer Science</i> , 2005 , 462-474	0.9	3
80	Proximity Searching in High Dimensional Spaces with a Proximity Preserving Order. <i>Lecture Notes in Computer Science</i> , 2005 , 405-414	0.9	17
79	Space-Efficient Construction of LZ-Index. <i>Lecture Notes in Computer Science</i> , 2005 , 1143-1152	0.9	8
78	Improved Single and Multiple Approximate String Matching. <i>Lecture Notes in Computer Science</i> , 2004 , 457-471	0.9	2
77	Simple, Fast, and Efficient Natural Language Adaptive Compression. <i>Lecture Notes in Computer Science</i> , 2004 , 230-241	0.9	4
76	On NFA Reductions. <i>Lecture Notes in Computer Science</i> , 2004 , 112-124	0.9	26
75	Average-optimal single and multiple approximate string matching. <i>Journal of Experimental Algorithmics</i> , 2004 , 9,	1.1	19
74	Probabilistic proximity searching algorithms based on compact partitions. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 115-134		20
73	Practical and flexible pattern matching over Zivlempel compressed text. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 347-371		10
72	Indexing text using the Zivlempel trie. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 87-114		69
71	Average complexity of exact and approximate multiple string matching. <i>Theoretical Computer Science</i> , 2004 , 321, 283-290	1.1	23
70	Pattern Matching. Journal of Applied Statistics, 2004, 31, 925-949	1	4
69	An Alphabet-Friendly FM-Index. <i>Lecture Notes in Computer Science</i> , 2004 , 150-160	0.9	41
68	Increased Bit-Parallelism for Approximate String Matching. <i>Lecture Notes in Computer Science</i> , 2004 , 285-298	0.9	6
67	Advantages of Backward Searching Efficient Secondary Memory and Distributed Implementation of Compressed Suffix Arrays. <i>Lecture Notes in Computer Science</i> , 2004 , 681-692	0.9	11

66	Text Searching: Theory and Practice. Studies in Fuzziness and Soft Computing, 2004, 565-597	0.7	3
65	(S,C)-Dense Coding: An Optimized Compression Code for Natural Language Text Databases. <i>Lecture Notes in Computer Science</i> , 2003 , 122-136	0.9	30
64	Flexible and Efficient Bit-Parallel Techniques for Transposition Invariant Approximate Matching in Music Retrieval. <i>Lecture Notes in Computer Science</i> , 2003 , 224-237	0.9	1
63	A Practical Index for Genome Searching. <i>Lecture Notes in Computer Science</i> , 2003 , 341-349	0.9	6
62	Matchsimile: A flexible approximate matching tool for searching proper names. <i>Journal of the Association for Information Science and Technology</i> , 2003 , 54, 3-15		12
61	Probabilistic proximity search: Fighting the curse of dimensionality in metric spaces. <i>Information Processing Letters</i> , 2003 , 85, 39-46	0.8	39
60	Pivot selection techniques for proximity searching in metric spaces. <i>Pattern Recognition Letters</i> , 2003 , 24, 2357-2366	4.7	132
59	Approximate string matching on Zivlempel compressed text. <i>Journal of Discrete Algorithms</i> , 2003 , 1, 313-338		16
58	Regular expression searching on compressed text. Journal of Discrete Algorithms, 2003, 1, 423-443		13
57	Fast and simple character classes and bounded gaps pattern matching, with applications to protein searching. <i>Journal of Computational Biology</i> , 2003 , 10, 903-23	1.7	45
56	Compressing Semistructured Text Databases. Lecture Notes in Computer Science, 2003, 482-490	0.9	
55	Approximate Regular Expression Searching with Arbitrary Integer Weights. <i>Lecture Notes in Computer Science</i> , 2003 , 230-239	0.9	1
54	SCM: Structural Contexts Model for Improving Compression in Semistructured Text Databases. <i>Lecture Notes in Computer Science</i> , 2003 , 153-167	0.9	2
53	An Efficient Compression Code for Text Databases. Lecture Notes in Computer Science, 2003, 468-481	0.9	25
52	Average-Optimal Multiple Approximate String Matching. Lecture Notes in Computer Science, 2003, 109-	1 2 89	5
51	XQL and proximal nodes. <i>Journal of the Association for Information Science and Technology</i> , 2002 , 53, 504-514		11
50	Searching in metric spaces by spatial approximation. VLDB Journal, 2002, 11, 28-46	3.9	127
49	New and faster filters for multiple approximate string matching. <i>Random Structures and Algorithms</i> , 2002 , 20, 23-49	0.8	15

48	Indexing Text Using the Ziv-Lempel Trie. Lecture Notes in Computer Science, 2002, 325-336	0.9	4
47	Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for Texts and Biological Sequences 2002 ,		194
46	Faster Bit-Parallel Approximate String Matching. Lecture Notes in Computer Science, 2002, 203-224	0.9	16
45	Optimal Exact and Fast Approximate Two Dimensional Pattern Matching Allowing Rotations. <i>Lecture Notes in Computer Science</i> , 2002 , 235-248	0.9	15
44	A Metric Index for Approximate String Matching. Lecture Notes in Computer Science, 2002, 181-195	0.9	13
43	Improving an Algorithm for Approximate Pattern Matching. <i>Algorithmica</i> , 2001 , 30, 473-502	0.9	14
42	NR-grep: a fast and flexible pattern-matching tool. Software - Practice and Experience, 2001, 31, 1265-1.	3125	58
41	A guided tour to approximate string matching. ACM Computing Surveys, 2001, 33, 31-88	13.4	1297
40	Fixed Queries Array: A Fast and Economical Data Structure for Proximity Searching. <i>Multimedia Tools and Applications</i> , 2001 , 14, 113-135	2.5	40
39	Searching in metric spaces. ACM Computing Surveys, 2001, 33, 273-321	13.4	726
39	Searching in metric spaces. <i>ACM Computing Surveys</i> , 2001 , 33, 273-321 Regular Expression Searching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2001 , 1-17	0.9	726
	Regular Expression Searching over Ziv-Lempel Compressed Text. Lecture Notes in Computer Science,		, and the second
38	Regular Expression Searching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2001 , 1-17	0.9	2
38	Regular Expression Searching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2001 , 1-17 Block addressing indices for approximate text retrieval 2000 , 51, 69-82	0.9	34
38 37 36	Regular Expression Searching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2001 , 1-17 Block addressing indices for approximate text retrieval 2000 , 51, 69-82 Improved approximate pattern matching on hypertext. <i>Theoretical Computer Science</i> , 2000 , 237, 455-46	0.9 5 3 1.1	2 34 34
38 37 36 35	Regular Expression Searching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2001 , 1-17 Block addressing indices for approximate text retrieval 2000 , 51, 69-82 Improved approximate pattern matching on hypertext. <i>Theoretical Computer Science</i> , 2000 , 237, 455-46 Compression: a key for next-generation text retrieval systems. <i>Computer</i> , 2000 , 33, 37-44	0.9 53 1.1	2 34 34 72
38 37 36 35 34	Regular Expression Searching over Ziv-Lempel Compressed Text. Lecture Notes in Computer Science, 2001, 1-17 Block addressing indices for approximate text retrieval 2000, 51, 69-82 Improved approximate pattern matching on hypertext. Theoretical Computer Science, 2000, 237, 455-46 Compression: a key for next-generation text retrieval systems. Computer, 2000, 33, 37-44 Adding Compression to Block Addressing Inverted Indexes. Information Retrieval, 2000, 3, 49-77 Boyer Moore String Matching over Ziv-Lempel Compressed Text. Lecture Notes in Computer	0.9 531.1 1.6	2 34 34 72 59

30	Block addressing indices for approximate text retrieval 2000 , 51, 69		6
29	An Index for Two Dimensional String Matching Allowing Rotations. <i>Lecture Notes in Computer Science</i> , 2000 , 59-75	0.9	7
28	Approximate String Matching over Zivlempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2000 , 195-209	0.9	14
27	Indexing Text with Approximate q-Grams. Lecture Notes in Computer Science, 2000, 350-363	0.9	24
26	Very fast and simple approximate string matching. <i>Information Processing Letters</i> , 1999 , 72, 65-70	0.8	29
25	Bounding the Expected Length of Longest Common Subsequences and Forests. <i>Theory of Computing Systems</i> , 1999 , 32, 435-452	0.6	17
24	Fast Regular Expression Search. Lecture Notes in Computer Science, 1999, 198-212	0.9	7
23	A New Indexing Method for Approximate String Matching. Lecture Notes in Computer Science, 1999 , 16	3-11 <i>8</i> 95	16
22	A bit-parallel approach to suffix automata: Fast extended string matching. <i>Lecture Notes in Computer Science</i> , 1998 , 14-33	0.9	41
21	Fast searching on compressed text allowing errors 1998 ,		24
20	Fast searching on compressed text allowing errors 1998 , Improved approximate pattern matching on hypertext. <i>Lecture Notes in Computer Science</i> , 1998 , 352-3.	57 6.9	3
		57 0.9 0.6	
20	Improved approximate pattern matching on hypertext. Lecture Notes in Computer Science, 1998, 352-3.		3
20	Improved approximate pattern matching on hypertext. <i>Lecture Notes in Computer Science</i> , 1998 , 352-3. A Practical q -Gram Index for Text Retrieval Allowing Errors. <i>CLEI Electronic Journal</i> , 1998 , 1,	0.6	3
20 19 18	Improved approximate pattern matching on hypertext. <i>Lecture Notes in Computer Science</i> , 1998 , 352-3. A Practical q -Gram Index for Text Retrieval Allowing Errors. <i>CLEI Electronic Journal</i> , 1998 , 1, Proximal nodes. <i>ACM Transactions on Information Systems</i> , 1997 , 15, 400-435	0.6	3 14 7 ²
20 19 18	Improved approximate pattern matching on hypertext. <i>Lecture Notes in Computer Science</i> , 1998 , 352-3. A Practical q -Gram Index for Text Retrieval Allowing Errors. <i>CLEI Electronic Journal</i> , 1998 , 1, Proximal nodes. <i>ACM Transactions on Information Systems</i> , 1997 , 15, 400-435 Multiple approximate string matching. <i>Lecture Notes in Computer Science</i> , 1997 , 174-184	o.6 4.8 o.9	3 14 7 ² 8
20 19 18 17 16	Improved approximate pattern matching on hypertext. <i>Lecture Notes in Computer Science</i> , 1998 , 352-3. A Practical q -Gram Index for Text Retrieval Allowing Errors. <i>CLEI Electronic Journal</i> , 1998 , 1, Proximal nodes. <i>ACM Transactions on Information Systems</i> , 1997 , 15, 400-435 Multiple approximate string matching. <i>Lecture Notes in Computer Science</i> , 1997 , 174-184 Integrating contents and structure in text retrieval. <i>SIGMOD Record</i> , 1996 , 25, 67-79	o.6 4.8 o.9	3 14 7 ² 8

12	Lempel-Ziv compression of structured text	11
11	Improved antidictionary based compression	8
10	An effective clustering algorithm to index high dimensional metric spaces	14
9	Fast multipattern search algorithms for intrusion detection	2
8	Dynamic spatial approximation trees	4
7	Faster approximate string matching over compressed text	11
6	A fast distributed suffix array generation algorithm	3
5	Searching in metric spaces by spatial approximation	6
4	Permutations103-119	
3	Grids347-394	
2	Dynamic Structures450-500	
1	Recent Trends501-548	