Gonzalo Navarro

List of Publications by Citations

Source: https://exaly.com/author-pdf/3490288/gonzalo-navarro-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

335 8, cita

8,519 citations

39 h-index 81 g-index

375 ext. papers

10,301 ext. citations

1.7 avg, IF

6.79 L-index

#	Paper	IF	Citations
335	A guided tour to approximate string matching. ACM Computing Surveys, 2001, 33, 31-88	13.4	1297
334	Searching in metric spaces. ACM Computing Surveys, 2001, 33, 273-321	13.4	726
333	Compressed full-text indexes. ACM Computing Surveys, 2007, 39, 2	13.4	411
332	Compressed representations of sequences and full-text indexes. <i>ACM Transactions on Algorithms</i> , 2007 , 3, 20	1.2	207
331	Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for Texts and Biological Sequences 2002 ,		194
330	Fast and flexible word searching on compressed text. <i>ACM Transactions on Information Systems</i> , 2000 , 18, 113-139	4.8	144
329	Pivot selection techniques for proximity searching in metric spaces. <i>Pattern Recognition Letters</i> , 2003 , 24, 2357-2366	4.7	132
328	Effective proximity retrieval by ordering permutations. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2008 , 30, 1647-58	13.3	131
327	Searching in metric spaces by spatial approximation. <i>VLDB Journal</i> , 2002 , 11, 28-46	3.9	127
326	Storage and retrieval of highly repetitive sequence collections. <i>Journal of Computational Biology</i> , 2010 , 17, 281-308	1.7	121
325	A compact space decomposition for effective metric indexing. <i>Pattern Recognition Letters</i> , 2005 , 26, 13	64 ./ 137	'6 102
324	Rank and select revisited and extended. <i>Theoretical Computer Science</i> , 2007 , 387, 332-347	1.1	88
323	Compact Data Structures: A Practical Approach 2016 ,		87
322	On compressing and indexing repetitive sequences. <i>Theoretical Computer Science</i> , 2013 , 483, 115-133	1.1	83
321	Fully Functional Static and Dynamic Succinct Trees. ACM Transactions on Algorithms, 2014 , 10, 1-39	1.2	80
320	Compact representation of Web graphs with extended functionality. <i>Information Systems</i> , 2014 , 39, 152	2 <i>-</i> 1.7 4	75
319	Proximal nodes. ACM Transactions on Information Systems, 1997 , 15, 400-435	4.8	72

(2003-2000)

318	Compression: a key for next-generation text retrieval systems. <i>Computer</i> , 2000 , 33, 37-44	1.6	72
317	Indexing text using the Zivlempel trie. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 87-114		69
316	Fast and flexible string matching by combining bit-parallelism and suffix automata. <i>Journal of Experimental Algorithmics</i> , 2000 , 5, 4	1.1	67
315	New algorithms on wavelet trees and applications to information retrieval. <i>Theoretical Computer Science</i> , 2012 , 426-427, 25-41	1.1	66
314	Faster entropy-bounded compressed suffix trees. <i>Theoretical Computer Science</i> , 2009 , 410, 5354-5364	1.1	64
313	Wavelet trees for all. <i>Journal of Discrete Algorithms</i> , 2014 , 25, 2-20		61
312	DACs: Bringing direct access to variable-length codes. <i>Information Processing and Management</i> , 2013 , 49, 392-404	6.3	61
311	Fully-Functional Succinct Trees 2010 ,		61
310	Compressed text indexes. Journal of Experimental Algorithmics, 2009, 13,	1.1	60
309	Adding Compression to Block Addressing Inverted Indexes. <i>Information Retrieval</i> , 2000 , 3, 49-77	1.8	59
308	NR-grep: a fast and flexible pattern-matching tool. <i>Software - Practice and Experience</i> , 2001 , 31, 1265-12	3125	58
307	Practical Rank/Select Queries over Arbitrary Sequences. Lecture Notes in Computer Science, 2008, 176-1	87 .9	57
306	Dynamic entropy-compressed sequences and full-text indexes. <i>ACM Transactions on Algorithms</i> , 2008 , 4, 1-38	1.2	54
305	Integrating contents and structure in text retrieval. SIGMOD Record, 1996, 25, 67-79	1.1	52
304	Fast and Compact Web Graph Representations. ACM Transactions on the Web, 2010, 4, 1-31	3.2	50
303	Lightweight natural language text compression. <i>Information Retrieval</i> , 2006 , 10, 1-33	1.8	49
302	k2-Trees for Compact Web Graph Representation. <i>Lecture Notes in Computer Science</i> , 2009 , 18-30	0.9	48
301	Fast and simple character classes and bounded gaps pattern matching, with applications to protein searching. <i>Journal of Computational Biology</i> , 2003 , 10, 903-23	1.7	45

300	Succinct Trees in Practice 2010 , 84-97		43
299	An Alphabet-Friendly FM-Index. <i>Lecture Notes in Computer Science</i> , 2004 , 150-160	0.9	41
298	A bit-parallel approach to suffix automata: Fast extended string matching. <i>Lecture Notes in Computer Science</i> , 1998 , 14-33	0.9	41
297	Fixed Queries Array: A Fast and Economical Data Structure for Proximity Searching. <i>Multimedia Tools and Applications</i> , 2001 , 14, 113-135	2.5	40
296	Probabilistic proximity search: Fighting the curse of dimensionality in metric spaces. <i>Information Processing Letters</i> , 2003 , 85, 39-46	0.8	39
295	Spaces, Trees, and Colors. ACM Computing Surveys, 2014, 46, 1-47	13.4	38
294	Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space. <i>Journal of the ACM</i> , 2020 , 67, 1-54	2	37
293	The wavelet matrix: An efficient wavelet tree for large alphabets. <i>Information Systems</i> , 2015 , 47, 15-32	2.7	35
292	Compressed Text Indexes with Fast Locate. Lecture Notes in Computer Science, 2007, 216-227	0.9	35
291	Optimal Lower and Upper Bounds for Representing Sequences. <i>ACM Transactions on Algorithms</i> , 2015 , 11, 1-21	1.2	34
290	Self-Indexed Grammar-Based Compression. Fundamenta Informaticae, 2011 , 111, 313-337	1	34
289	Block addressing indices for approximate text retrieval 2000 , 51, 69-82		34
288	Improved approximate pattern matching on hypertext. <i>Theoretical Computer Science</i> , 2000 , 237, 455-46	5 3 1.1	34
287	Word-based self-indexes for natural language text. <i>ACM Transactions on Information Systems</i> , 2012 , 30, 1-34	4.8	32
286	Fully compressed suffix trees. ACM Transactions on Algorithms, 2011, 7, 1-34	1.2	32
285	Self-indexing Based on LZ77. Lecture Notes in Computer Science, 2011 , 41-54	0.9	32
284	Improved compressed indexes for full-text document retrieval. <i>Journal of Discrete Algorithms</i> , 2013 , 18, 3-13		30
283	Compressed vertical partitioning for efficient RDF management. <i>Knowledge and Information Systems</i> , 2015 , 44, 439-474	2.4	30

282	LZ77-Like Compression with Fast Random Access 2010 ,		30
281	(S,C)-Dense Coding: An Optimized Compression Code for Natural Language Text Databases. <i>Lecture Notes in Computer Science</i> , 2003 , 122-136	0.9	30
280	Top-k Document Retrieval in Optimal Time and Linear Space 2012,		30
279	Practical compressed string dictionaries. <i>Information Systems</i> , 2016 , 56, 73-108	2.7	29
278	Very fast and simple approximate string matching. <i>Information Processing Letters</i> , 1999 , 72, 65-70	0.8	29
277	Top-k Ranked Document Search in General Text Databases. <i>Lecture Notes in Computer Science</i> , 2010 , 194-205	0.9	28
276	Improved Grammar-Based Compressed Indexes. Lecture Notes in Computer Science, 2012, 180-192	0.9	28
275	Position-Restricted Substring Searching. <i>Lecture Notes in Computer Science</i> , 2006 , 703-714	0.9	28
274	Compressed representations for web and social graphs. <i>Knowledge and Information Systems</i> , 2014 , 40, 279-313	2.4	27
273	Stronger Lempel-Ziv Based Compressed Text Indexing. <i>Algorithmica</i> , 2012 , 62, 54-101	0.9	27
272	Alphabet Partitioning for Compressed Rank/Select and Applications. <i>Lecture Notes in Computer Science</i> , 2010 , 315-326	0.9	27
271	Space-efficient data-analysis queries on grids. <i>Theoretical Computer Science</i> , 2013 , 482, 60-72	1.1	26
270	Efficient Fully-Compressed Sequence Representations. <i>Algorithmica</i> , 2014 , 69, 232-268	0.9	26
269	On NFA Reductions. Lecture Notes in Computer Science, 2004, 112-124	0.9	26
268	Transposition invariant string matching. Journal of Algorithms, 2005, 56, 124-153		26
267	Practical Construction of k-Nearest Neighbor Graphs in Metric Spaces. <i>Lecture Notes in Computer Science</i> , 2006 , 85-97	0.9	26
266	New Techniques for Regular Expression Searching. <i>Algorithmica</i> , 2005 , 41, 89-116	0.9	25
265	An Efficient Compression Code for Text Databases. <i>Lecture Notes in Computer Science</i> , 2003 , 468-481	0.9	25

264	Optimal-Time Text Indexing in BWT-runs Bounded Space 2018 , 1459-1477		24
263	Optimal Dynamic Sequence Representations. <i>SIAM Journal on Computing</i> , 2014 , 43, 1781-1806	1.1	24
262	Alphabet-Independent Compressed Text Indexing. ACM Transactions on Algorithms, 2014, 10, 1-19	1.2	24
261	Compressed q-Gram Indexing for Highly Repetitive Biological Sequences 2010,		24
260	Fast searching on compressed text allowing errors 1998,		24
259	Run-Length Compressed Indexes Are Superior for Highly Repetitive Sequence Collections. <i>Lecture Notes in Computer Science</i> , 2008 , 164-175	0.9	24
258	Wavelet Trees for All. <i>Lecture Notes in Computer Science</i> , 2012 , 2-26	0.9	24
257	Indexing Text with Approximate q-Grams. Lecture Notes in Computer Science, 2000, 350-363	0.9	24
256	Succinct nearest neighbor search. <i>Information Systems</i> , 2013 , 38, 1019-1030	2.7	23
255	Approximate String Matching with Compressed Indexes. <i>Algorithms</i> , 2009 , 2, 1105-1136	1.8	23
254	Fully dynamic metric access methods based on hyperplane partitioning. <i>Information Systems</i> , 2011 , 36, 734-747	2.7	23
253	Average complexity of exact and approximate multiple string matching. <i>Theoretical Computer Science</i> , 2004 , 321, 283-290	1.1	23
252	Boyer Moore String Matching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2000 , 166-180	0.9	23
251	Near neighbor searching with K nearest references. <i>Information Systems</i> , 2015 , 51, 43-61	2.7	22
250	Practical Compressed Suffix Trees. <i>Algorithms</i> , 2013 , 6, 319-351	1.8	22
249	Dynamic spatial approximation trees. <i>Journal of Experimental Algorithmics</i> , 2008 , 12, 1-68	1.1	22
248	Rank/select on dynamic compressed sequences and applications. <i>Theoretical Computer Science</i> , 2009 , 410, 4414-4422	1.1	21
247	Fast approximate string matching in a dictionary		21

246	Statistical Encoding of Succinct Data Structures. Lecture Notes in Computer Science, 2006, 294-305	0.9	21
245	Reorganizing compressed text 2008,		20
244	Probabilistic proximity searching algorithms based on compact partitions. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 115-134		20
243	Extended Compact Web Graph Representations. Lecture Notes in Computer Science, 2010, 77-91	0.9	20
242	Indexing Highly Repetitive Collections. Lecture Notes in Computer Science, 2012, 274-279	0.9	20
241	Analyzing Metric Space Indexes: What For? 2009 ,		19
240	Average-optimal single and multiple approximate string matching. <i>Journal of Experimental Algorithmics</i> , 2004 , 9,	1.1	19
239	Succinct Suffix Arrays Based on Run-Length Encoding. Lecture Notes in Computer Science, 2005, 45-56	0.9	19
238	Compact Querieable Representations of Raster Data. Lecture Notes in Computer Science, 2013, 96-108	0.9	19
237	Directly Addressable Variable-Length Codes. Lecture Notes in Computer Science, 2009, 122-130	0.9	19
236	Colored Range Queries and Document Retrieval. Lecture Notes in Computer Science, 2010, 67-81	0.9	19
235	Alphabet-Independent Compressed Text Indexing. Lecture Notes in Computer Science, 2011, 748-759	0.9	19
234	Universal compressed text indexing. <i>Theoretical Computer Science</i> , 2019 , 762, 41-50	1.1	19
233	Colored range queries and document retrieval. <i>Theoretical Computer Science</i> , 2013 , 483, 36-50	1.1	18
232	Implicit indexing of natural language text by reorganizing bytecodes. <i>Information Retrieval</i> , 2012 , 15, 527-557	1.8	18
231	Bit-Parallel Witnesses and Their Applications to Approximate String Matching. <i>Algorithmica</i> , 2005 , 41, 203-231	0.9	18
230	Compressed String Dictionaries. Lecture Notes in Computer Science, 2011, 136-147	0.9	18
229	Practical Compressed Document Retrieval. <i>Lecture Notes in Computer Science</i> , 2011 , 193-205	0.9	18

228	Sorted Range Reporting. Lecture Notes in Computer Science, 2012, 271-282	0.9	18
227	Universal indexes for highly repetitive document collections. <i>Information Systems</i> , 2016 , 61, 1-23	2.7	18
226	Compact binary relation representations with rich functionality. <i>Information and Computation</i> , 2013 , 232, 19-37	0.8	17
225	Faster and smaller inverted indices with treaps 2013,		17
224	Dynamic lightweight text compression. ACM Transactions on Information Systems, 2010, 28, 1-32	4.8	17
223	Bounding the Expected Length of Longest Common Subsequences and Forests. <i>Theory of Computing Systems</i> , 1999 , 32, 435-452	0.6	17
222	Proximity Searching in High Dimensional Spaces with a Proximity Preserving Order. <i>Lecture Notes in Computer Science</i> , 2005 , 405-414	0.9	17
221	On the Least Cost for Proximity Searching in Metric Spaces. <i>Lecture Notes in Computer Science</i> , 2006 , 279-290	0.9	17
220	Fast in-memory XPath search using compressed indexes 2010 ,		16
219	Approximate string matching on Zivlempel compressed text. <i>Journal of Discrete Algorithms</i> , 2003 , 1, 313-338		16
218	A Fast and Compact Web Graph Representation 2007 , 118-129		16
217	Self-indexed Text Compression Using Straight-Line Programs. <i>Lecture Notes in Computer Science</i> , 2009 , 235-246	0.9	16
216	New Lower and Upper Bounds for Representing Sequences. <i>Lecture Notes in Computer Science</i> , 2012 , 181-192	0.9	16
215	Faster Bit-Parallel Approximate String Matching. Lecture Notes in Computer Science, 2002, 203-224	0.9	16
214	A New Indexing Method for Approximate String Matching. Lecture Notes in Computer Science, 1999, 163	3-11 <i>8</i> 95	16
213	Space-efficient representations of rectangle datasets supporting orthogonal range querying. <i>Information Systems</i> , 2013 , 38, 635-655	2.7	15
212	Maximum-weight planar boxes in O(n2) time (and better). <i>Information Processing Letters</i> , 2014 , 114, 437	7- 4.\$ 5	15
211	Dynamic Spatial Approximation Trees for Massive Data 2009 ,		15

(2006-2002)

210	New and faster filters for multiple approximate string matching. <i>Random Structures and Algorithms</i> , 2002 , 20, 23-49	0.8	15	
209	Practical Compressed Suffix Trees. <i>Lecture Notes in Computer Science</i> , 2010 , 94-105	0.9	15	
208	Dual-Sorted Inverted Lists. Lecture Notes in Computer Science, 2010 , 309-321	0.9	15	
207	The Wavelet Matrix. Lecture Notes in Computer Science, 2012, 167-179	0.9	15	
206	Reducing the Space Requirement of LZ-Index. <i>Lecture Notes in Computer Science</i> , 2006 , 318-329	0.9	15	
205	Optimal Exact and Fast Approximate Two Dimensional Pattern Matching Allowing Rotations. <i>Lecture Notes in Computer Science</i> , 2002 , 235-248	0.9	15	
204	String matching with alphabet sampling. Journal of Discrete Algorithms, 2012, 11, 37-50		14	
203	Faster Compact Top-k Document Retrieval 2013 ,		14	
202	Space-efficient construction of LempelZiv compressed text indexes. <i>Information and Computation</i> , 2011 , 209, 1070-1102	0.8	14	
201	LZgrep: a BoyerMoore string matching tool for ZivIlempel compressed text. <i>Software - Practice and Experience</i> , 2005 , 35, 1107-1130	2.5	14	
200	Improving an Algorithm for Approximate Pattern Matching. <i>Algorithmica</i> , 2001 , 30, 473-502	0.9	14	
199	An effective clustering algorithm to index high dimensional metric spaces		14	
198	A Practical q -Gram Index for Text Retrieval Allowing Errors. CLEI Electronic Journal, 1998, 1,	0.6	14	
197	Towards a Definitive Measure of Repetitiveness. <i>Lecture Notes in Computer Science</i> , 2020 , 207-219	0.9	14	
196	Dynamic Entropy-Compressed Sequences and Full-Text Indexes. <i>Lecture Notes in Computer Science</i> , 2006 , 306-317	0.9	14	
195	Approximate String Matching over Zivlempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2000 , 195-209	0.9	14	
194	On compressing permutations and adaptive sorting. <i>Theoretical Computer Science</i> , 2013 , 513, 109-123	1.1	13	
193	A SIMPLE ALPHABET-INDEPENDENT FM-INDEX. <i>International Journal of Foundations of Computer Science</i> , 2006 , 17, 1365-1384	0.6	13	

192	Regular expression searching on compressed text. <i>Journal of Discrete Algorithms</i> , 2003 , 1, 423-443	13	
191	Indexing text with approximate q-grams. <i>Journal of Discrete Algorithms</i> , 2005 , 3, 157-175	13	
190	An(other) Entropy-Bounded Compressed Suffix Tree 2008 , 152-165	13	
189	Optimal-Time Dictionary-Compressed Indexes. <i>ACM Transactions on Algorithms</i> , 2021 , 17, 1-39 1.2	13	
188	A Metric Index for Approximate String Matching. <i>Lecture Notes in Computer Science</i> , 2002 , 181-195 0.9	13	
187	GraCT: A Grammar-based Compressed Index for Trajectory Data. <i>Information Sciences</i> , 2019 , 483, 106-13 5 .7	12	
186	Matchsimile: A flexible approximate matching tool for searching proper names. <i>Journal of the Association for Information Science and Technology</i> , 2003 , 54, 3-15	12	
185	Increased bit-parallelism for approximate and multiple string matching. <i>Journal of Experimental Algorithmics</i> , 2005 , 10,	12	
184	Compact Rich-Functional Binary Relation Representations. Lecture Notes in Computer Science, 2010, 170-1.8	3 12	
183	Space-Efficient Top-k Document Retrieval. <i>Lecture Notes in Computer Science</i> , 2012 , 307-319 0.9	12	
182	RePair and All Irreducible Grammars are Upper Bounded by High-Order Empirical Entropy. <i>IEEE Transactions on Information Theory</i> , 2019 , 65, 3160-3164	12	
181	An empirical evaluation of intrinsic dimension estimators. <i>Information Systems</i> , 2017 , 64, 206-218 2.7	11	
180	A Compact RDF Store Using Suffix Arrays. <i>Lecture Notes in Computer Science</i> , 2015 , 103-115 0.9	11	
179	Compressed Dynamic Binary Relations 2012 ,	11	
178	Optimal Dynamic Sequence Representations 2013 ,	11	
177	Re-pair Achieves High-Order Entropy. Proceedings of the Data Compression Conference, 2008,	11	
176	XQL and proximal nodes. <i>Journal of the Association for Information Science and Technology</i> , 2002 , 53, 504-514	11	
175	Lempel-Ziv compression of structured text	11	

174	Faster approximate string matching over compressed text		11
173	Advantages of Backward Searching Efficient Secondary Memory and Distributed Implementation of Compressed Suffix Arrays. <i>Lecture Notes in Computer Science</i> , 2004 , 681-692	0.9	11
172	Better Space Bounds for Parameterized Range Majority and Minority. <i>Lecture Notes in Computer Science</i> , 2013 , 121-132	0.9	11
171	Compressed representation of dynamic binary relations with applications. <i>Information Systems</i> , 2017 , 69, 106-123	2.7	10
170	Document retrieval on repetitive string collections. <i>Information Retrieval</i> , 2017 , 20, 253-291	1.8	10
169	New dynamic metric indices for secondary memory. <i>Information Systems</i> , 2016 , 59, 48-78	2.7	10
168	Faster Compressed Suffix Trees for Repetitive Collections. <i>Journal of Experimental Algorithmics</i> , 2016 , 21, 1-38	1.1	10
167	Space-Efficient Construction of Compressed Indexes in Deterministic Linear Time 2017,		10
166	Using structural contexts to compress semistructured text collections. <i>Information Processing and Management</i> , 2007 , 43, 769-790	6.3	10
165	Practical and flexible pattern matching over Zivlempel compressed text. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 347-371		10
164	Compressed Representation of Web and Social Networks via Dense Subgraphs. <i>Lecture Notes in Computer Science</i> , 2012 , 264-276	0.9	10
163	Document Listing on Repetitive Collections. <i>Lecture Notes in Computer Science</i> , 2013 , 107-119	0.9	10
162	A succinct data structure for self-indexing ternary relations. <i>Journal of Discrete Algorithms</i> , 2017 , 43, 38-53		9
161	Time-Optimal Top-\$k\$ Document Retrieval. SIAM Journal on Computing, 2017, 46, 80-113	1.1	9
160	New space/time tradeoffs for top-k document retrieval on sequences. <i>Theoretical Computer Science</i> , 2014 , 542, 83-97	1.1	9
159	LRM-Trees: Compressed indices, adaptive sorting, and compressed permutations. <i>Theoretical Computer Science</i> , 2012 , 459, 26-41	1.1	9
158	Implementing the LZ-index. Journal of Experimental Algorithmics, 2009, 13,	1.1	9
157	Improving the space cost of k-NN search in metric spaces by using distance estimators. <i>Multimedia Tools and Applications</i> , 2009 , 41, 215-233	2.5	9

156	Rpair: Rescaling RePair with Rsync. Lecture Notes in Computer Science, 2019, 35-44	0.9	9
155	Self-indexing Natural Language. Lecture Notes in Computer Science, 2008, 121-132	0.9	9
154	Relative Suffix Trees. Computer Journal, 2018, 61, 773-788	1.3	9
153	Locally Compressed Suffix Arrays. Journal of Experimental Algorithmics, 2015, 19,	1.1	8
152	Fast in-memory XPath search using compressed indexes. <i>Software - Practice and Experience</i> , 2015 , 45, 399-434	2.5	8
151	FLEXIBLE MUSIC RETRIEVAL IN SUBLINEAR TIME. <i>International Journal of Foundations of Computer Science</i> , 2006 , 17, 1345-1364	0.6	8
150	A Lempel-Ziv Text Index on Secondary Storage. Lecture Notes in Computer Science, 2007, 83-94	0.9	8
149	Improved antidictionary based compression		8
148	Aggregated 2D range queries on clustered points. <i>Information Systems</i> , 2016 , 60, 34-49	2.7	8
147	Space-Efficient Construction of LZ-Index. <i>Lecture Notes in Computer Science</i> , 2005 , 1143-1152	0.9	8
146	Multiple approximate string matching. Lecture Notes in Computer Science, 1997, 174-184	0.9	8
145	Improved Range Minimum Queries. <i>Journal of Discrete Algorithms</i> , 2017 , 43, 72-80		7
144	Distributed text search using suffix arrays. Parallel Computing, 2014, 40, 471-495	1	7
143	Speeding up spatial approximation search in metric spaces. <i>Journal of Experimental Algorithmics</i> , 2009 , 14,	1.1	7
142	Rotation and lighting invariant template matching. <i>Information and Computation</i> , 2007 , 205, 1096-1113	0.8	7
141	New adaptive compressors for natural language text. <i>Software - Practice and Experience</i> , 2008 , 38, 1429	-1. 4 50	7
140	Efficiently decodable and searchable natural language adaptive compression 2005,		7
139	A Fun Application of Compact Data Structures to Indexing Geographic Data. <i>Lecture Notes in Computer Science</i> , 2010 , 77-88	0.9	7

138	Improved Compressed Indexes for Full-Text Document Retrieval. <i>Lecture Notes in Computer Science</i> , 2011 , 386-397	0.9	7
137	Indexing Highly Repetitive String Collections, Part I. ACM Computing Surveys, 2021, 54, 1-31	13.4	7
136	Simple and efficient fully-functional succinct trees. <i>Theoretical Computer Science</i> , 2016 , 656, 135-145	1.1	7
135	An Index for Two Dimensional String Matching Allowing Rotations. <i>Lecture Notes in Computer Science</i> , 2000 , 59-75	0.9	7
134	Fast Regular Expression Search. <i>Lecture Notes in Computer Science</i> , 1999 , 198-212	0.9	7
133	. IEEE Transactions on Information Theory, 2015 , 61, 4999-5011	2.8	6
132	Fast Fully-Compressed Suffix Trees 2014 ,		6
131	Boosting Text Compression with Word-Based Statistical Encoding. <i>Computer Journal</i> , 2012 , 55, 111-131	1.3	6
130	A metric index for approximate string matching. <i>Theoretical Computer Science</i> , 2006 , 352, 266-279	1.1	6
129	A Practical Index for Genome Searching. Lecture Notes in Computer Science, 2003, 341-349	0.9	6
128	Sequential and indexed two-dimensional combinatorial template matching allowing rotations. <i>Theoretical Computer Science</i> , 2005 , 347, 239-275	1.1	6
127	Searching in metric spaces by spatial approximation		6
126	Protein complex prediction via dense subgraphs and false positive analysis. <i>PLoS ONE</i> , 2017 , 12, e01834	1607	6
125	A Lempel-Ziv Compressed Structure for Document Listing. <i>Lecture Notes in Computer Science</i> , 2013 , 116	-12/8	6
124	On the Approximation Ratio of Lempel-Ziv Parsing. Lecture Notes in Computer Science, 2018, 490-503	0.9	6
123	Increased Bit-Parallelism for Approximate String Matching. <i>Lecture Notes in Computer Science</i> , 2004 , 285-298	0.9	6
122	Indexing Variable Length Substrings for Exact and Approximate Matching. <i>Lecture Notes in Computer Science</i> , 2009 , 214-221	0.9	6
121	A New Point Access Method Based on Wavelet Trees. Lecture Notes in Computer Science, 2009, 297-306	0.9	6

120	Encodings for Range Selection and Top-k Queries. Lecture Notes in Computer Science, 2013, 553-564	0.9	6
119	. IEEE Transactions on Information Theory, 2021 , 67, 1008-1026	2.8	6
118	Block addressing indices for approximate text retrieval 2000 , 51, 69		6
117	Document listing on repetitive collections with guaranteed performance. <i>Theoretical Computer Science</i> , 2019 , 772, 58-72	1.1	5
116	Improved and extended locating functionality on compressed suffix arrays. <i>Journal of Discrete Algorithms</i> , 2015 , 32, 53-63		5
115	Lempel Z iv-Like Parsing in Small Space. <i>Algorithmica</i> , 2020 , 82, 3195-3215	0.9	5
114	Tunneling on Wheeler Graphs 2019 ,		5
113	Grammar Compressed Sequences with Rank/Select Support. <i>Lecture Notes in Computer Science</i> , 2014 , 31-44	0.9	5
112	Compressing Huffman Models on Large Alphabets 2013 ,		5
111	On Sorting, Heaps, and Minimum Spanning Trees. <i>Algorithmica</i> , 2010 , 57, 585-620	0.9	5
111	On Sorting, Heaps, and Minimum Spanning Trees. <i>Algorithmica</i> , 2010 , 57, 585-620 Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478	0.9	5
	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information</i>	0.9	
110	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478		5
110 109	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478 Space-Efficient Data-Analysis Queries on Grids. <i>Lecture Notes in Computer Science</i> , 2011 , 323-332	0.9	5
110	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478 Space-Efficient Data-Analysis Queries on Grids. <i>Lecture Notes in Computer Science</i> , 2011 , 323-332 Indexing Highly Repetitive String Collections, Part II. <i>ACM Computing Surveys</i> , 2021 , 54, 1-32	0.9	5 5 5
110 109 108	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478 Space-Efficient Data-Analysis Queries on Grids. <i>Lecture Notes in Computer Science</i> , 2011 , 323-332 Indexing Highly Repetitive String Collections, Part II. <i>ACM Computing Surveys</i> , 2021 , 54, 1-32 Worst-Case Optimal Graph Joins in Almost No Space 2021 , Extending general compact querieable representations to GIS applications. <i>Information Sciences</i> ,	0.9	5 5 5
110 109 108 107	Lempel-Ziv compression of highly structured documents. <i>Journal of the Association for Information Science and Technology</i> , 2007 , 58, 461-478 Space-Efficient Data-Analysis Queries on Grids. <i>Lecture Notes in Computer Science</i> , 2011 , 323-332 Indexing Highly Repetitive String Collections, Part II. <i>ACM Computing Surveys</i> , 2021 , 54, 1-32 Worst-Case Optimal Graph Joins in Almost No Space 2021 , Extending general compact querieable representations to GIS applications. <i>Information Sciences</i> , 2020 , 506, 196-216 Compact structure for sparse undirected graphs based on a clique graph partition. <i>Information</i>	0.9 13.4 7.7	5 5 5 5

102	Optimal Encodings for Range Majority Queries. <i>Algorithmica</i> , 2016 , 74, 1082-1098	0.9	4
101	Asymptotically Optimal Encodings of Range Data Structures for Selection and Top- k Queries. <i>ACM Transactions on Algorithms</i> , 2017 , 13, 1-31	1.2	4
100	Faster Compressed Quadtrees 2015 ,		4
99	EGNAT: A Fully Dynamic Metric Access Method for Secondary Memory 2009,		4
98	Word-Based Statistical Compressors as Natural Language Compression Boosters. <i>Proceedings of the Data Compression Conference</i> , 2008 ,		4
97	t-Spanners for metric space searching. <i>Data and Knowledge Engineering</i> , 2007 , 63, 820-854	1.5	4
96	BIT-PARALLEL COMPUTATION OF LOCAL SIMILARITY SCORE MATRICES WITH UNITARY WEIGHTS. International Journal of Foundations of Computer Science, 2006 , 17, 1325-1344	0.6	4
95	Simple, Fast, and Efficient Natural Language Adaptive Compression. <i>Lecture Notes in Computer Science</i> , 2004 , 230-241	0.9	4
94	Pattern Matching. Journal of Applied Statistics, 2004, 31, 925-949	1	4
93	Improved deletions in dynamic spatial approximation trees		4
92	New bounds on D-ary optimal codes. <i>Information Processing Letters</i> , 2005 , 96, 178-184	0.8	4
91	Indexing Text Using the Ziv-Lempel Trie. Lecture Notes in Computer Science, 2002, 325-336	0.9	4
90	Dynamic spatial approximation trees		4
89	Practical Random Access to SLP-Compressed Texts. Lecture Notes in Computer Science, 2020 , 221-231	0.9	4
88			
00	Faster Top-k Document Retrieval in Optimal Space. Lecture Notes in Computer Science, 2013 , 255-262	0.9	4
87	Faster Top-k Document Retrieval in Optimal Space. <i>Lecture Notes in Computer Science</i> , 2013 , 255-262 A Self-index on Block Trees. <i>Lecture Notes in Computer Science</i> , 2017 , 278-289	0.9	4

84	Practical Dynamic Entropy-Compressed Bitvectors with Applications. <i>Lecture Notes in Computer Science</i> , 2016 , 105-117	0.9	4
83	Fast and Compact Prefix Codes. <i>Lecture Notes in Computer Science</i> , 2010 , 419-427	0.9	4
82	Improved Range Minimum Queries 2016 ,		4
81	PFP Compressed Suffix Trees. 2021 , 2021, 60-72		4
80	Document Counting in Compressed Space 2015 ,		3
79	Interleaved K2-Tree: Indexing and Navigating Ternary Relations 2014 ,		3
78	General Document Retrieval in Compact Space. Journal of Experimental Algorithmics, 2015, 19, 1-46	1.1	3
77	Modeling Text Databases 2005 , 1-25		3
76	Improved approximate pattern matching on hypertext. Lecture Notes in Computer Science, 1998, 352-3	57 6.9	3
75	A fast distributed suffix array generation algorithm		3
74	Efficient Compressed Indexing for Approximate Top-k String Retrieval. <i>Lecture Notes in Computer Science</i> , 2014 , 18-30	0.9	3
73	GraCT: A Grammar Based Compressed Representation of Trajectories. <i>Lecture Notes in Computer Science</i> , 2016 , 218-230	0.9	3
72	Text Searching: Theory and Practice. Studies in Fuzziness and Soft Computing, 2004, 565-597	0.7	3
71	Approximate String Matching with Lempel-Ziv Compressed Indexes 2007 , 264-275		3
70	Compressed Suffix Trees for Repetitive Texts. Lecture Notes in Computer Science, 2012, 30-41	0.9	3
69	Fast and compact planar embeddings. Computational Geometry: Theory and Applications, 2020, 89, 1010	5 30 4	3
68	Grammar-compressed indexes with logarithmic search time. <i>Journal of Computer and System Sciences</i> , 2021 , 118, 53-74	1	3
67	Compressing Dynamic Text Collections via Phrase-Based Coding. <i>Lecture Notes in Computer Science</i> , 2005 , 462-474	0.9	3

66	Compressed Dynamic Range Majority Data Structures 2017 ,		2
65	On the reproducibility of experiments of indexing repetitive document collections. <i>Information Systems</i> , 2019 , 83, 181-194	2.7	2
64	Bottom-k document retrieval. <i>Journal of Discrete Algorithms</i> , 2015 , 32, 69-74		2
63	Improved Compressed String Dictionaries 2019 ,		2
62	Improved Single-Term Top-k Document Retrieval 2015 , 24-32		2
61	Encodings for Range Majority Queries. <i>Lecture Notes in Computer Science</i> , 2014 , 262-272	0.9	2
60	A New Searchable Variable-to-Variable Compressor 2010 ,		2
59	Parallel generation of inverted files for distributed text collections		2
58	Improved Single and Multiple Approximate String Matching. <i>Lecture Notes in Computer Science</i> , 2004 , 457-471	0.9	2
57	Fast multipattern search algorithms for intrusion detection		2
56	Fast, Small, and Simple Document Listing on Repetitive Text Collections. <i>Lecture Notes in Computer Science</i> , 2019 , 482-498	0.9	2
55	K2-Treaps: Range Top-k Queries in Compact Space. <i>Lecture Notes in Computer Science</i> , 2014 , 215-226	0.9	2
54	Efficient Compression and Indexing of Trajectories. Lecture Notes in Computer Science, 2017, 103-115	0.9	2
53	SCM: Structural Contexts Model for Improving Compression in Semistructured Text Databases. <i>Lecture Notes in Computer Science</i> , 2003 , 153-167	0.9	2
52	Improving Semistatic Compression Via Pair-Based Coding 2006 , 124-134		2
51	A Compressed Self-indexed Representation of XML Documents. <i>Lecture Notes in Computer Science</i> , 2009 , 273-284	0.9	2
50	Range Queries over a Compact Representation of Minimum Bounding Rectangles. <i>Lecture Notes in Computer Science</i> , 2010 , 33-42	0.9	2
49	Ranked Document Retrieval in (Almost) No Space. Lecture Notes in Computer Science, 2012, 155-160	0.9	2

48	Top-k Document Retrieval in Compact Space and Near-Optimal Time. <i>Lecture Notes in Computer Science</i> , 2013 , 394-404	0.9	2
47	Dynamic List of Clusters in Secondary Memory. <i>Lecture Notes in Computer Science</i> , 2014 , 94-105	0.9	2
46	Approximate String Matching 2014 , 1-5		2
45	Fast Compressed Self-indexes with Deterministic Linear-Time Construction. <i>Algorithmica</i> , 2020 , 82, 316	-3337	2
44	On Dynamic Succinct Graph Representations 2020 ,		2
43	Faster repetition-aware compressed suffix trees based on Block Trees. <i>Information and Computation</i> , 2021 , 104749	0.8	2
42	Parallel computation of the Burrows Wheeler Transform in compact space. <i>Theoretical Computer Science</i> , 2020 , 812, 123-136	1.1	2
41	A grammar compressor for collections of reads with applications to the construction of the BWT 2021 ,		2
40	Regular Expression Searching over Ziv-Lempel Compressed Text. <i>Lecture Notes in Computer Science</i> , 2001 , 1-17	0.9	2
39	Top-k Term-Proximity in Succinct Space. <i>Algorithmica</i> , 2017 , 78, 379-393	0.9	1
38	Inverted Treaps. ACM Transactions on Information Systems, 2017, 35, 1-45	4.8	1
37	Path queries on functions. <i>Theoretical Computer Science</i> , 2019 , 770, 34-50	1.1	1
36	Compressed Dynamic Range Majority and Minority Data Structures. <i>Algorithmica</i> , 2020 , 82, 2063-2086	0.9	1
35	Grammar compressed sequences with rank/select support. <i>Journal of Discrete Algorithms</i> , 2017 , 43, 54-	71	1
34	On-line approximate string matching with bounded errors. <i>Theoretical Computer Science</i> , 2011 , 412, 635	5 9.6 37	701
33	Improving semistatic compression via phrase-based modeling. <i>Information Processing and Management</i> , 2011 , 47, 545-559	6.3	1
32	STRONGER QUICKHEAPS. International Journal of Foundations of Computer Science, 2011 , 22, 945-969	0.6	1
31	. Proceedings of the Data Compression Conference, 2008 ,		1

(2010-2003)

30	Flexible and Efficient Bit-Parallel Techniques for Transposition Invariant Approximate Matching in Music Retrieval. <i>Lecture Notes in Computer Science</i> , 2003 , 224-237	0.9	1
29	Speeding Up Pattern Matching by Text Sampling. Lecture Notes in Computer Science, 2008, 87-98	0.9	1
28	Faster Dynamic Compressed d-ary Relations. Lecture Notes in Computer Science, 2019, 419-433	0.9	1
27	Top-(k) Term-Proximity in Succinct Space. <i>Lecture Notes in Computer Science</i> , 2014 , 169-180	0.9	1
26	Efficient and Compact Representations of Some Non-canonical Prefix-Free Codes. <i>Lecture Notes in Computer Science</i> , 2016 , 50-60	0.9	1
25	Approximate Regular Expression Searching with Arbitrary Integer Weights. <i>Lecture Notes in Computer Science</i> , 2003 , 230-239	0.9	1
24	An index for moving objects with constant-time access to their compressed trajectories. <i>International Journal of Geographical Information Science</i> , 2021 , 35, 1392-1424	4.1	1
23	On Stricter Reachable Repetitiveness Measures. Lecture Notes in Computer Science, 2021 , 193-206	0.9	1
22	Compressed filesystem for managing large genome collections. <i>Bioinformatics</i> , 2019 , 35, 4120-4128	7. 2	O
21	Lempelliv compressed structures for document retrieval. <i>Information and Computation</i> , 2019 , 265, 1-25	0.8	O
20	XXS. ACM Transactions on Information Systems, 2014 , 32, 1-37	4.8	O
19	Reporting consecutive substring occurrences under bounded gap constraints. <i>Theoretical Computer Science</i> , 2016 , 638, 108-111	1.1	O
18	Ranked document selection. <i>Theoretical Computer Science</i> , 2020 , 812, 149-159	1.1	O
17	An LMS-Based Grammar Self-index with Local Consistency Properties. <i>Lecture Notes in Computer Science</i> , 2021 , 100-113	0.9	O
16	Practical Compact Indexes for Top- k Document Retrieval. <i>Journal of Experimental Algorithmics</i> , 2017 , 22, 1-37	1.1	
15	Cell cycle and protein complex dynamics in discovering signaling pathways. <i>Journal of Bioinformatics and Computational Biology</i> , 2019 , 17, 1950011	1	
14	An Empirical Evaluation of Intrinsic Dimension Estimators. <i>Lecture Notes in Computer Science</i> , 2015 , 12	5-16337	
13	Fundamentals of the problem. SIGSPATIAL Special, 2010 , 2, 2-7	2.3	

12	Contextual Pattern Matching. Lecture Notes in Computer Science, 2020, 3-10	0.9
11	Compressing Semistructured Text Databases. Lecture Notes in Computer Science, 2003, 482-490	0.9
10	Indexed Hierarchical Approximate String Matching. Lecture Notes in Computer Science, 2008, 144-154	0.9
9	Engineering Practical Lempel-Ziv Tries. <i>Journal of Experimental Algorithmics</i> , 2021 , 26, 1-47	1.1
8	Text Index Compression 2017 , 1-6	
7	Improved and Extended Locating Functionality on Compressed Suffix Arrays. <i>Lecture Notes in Computer Science</i> , 2014 , 436-447	0.9
6	Tree path majority data structures. <i>Theoretical Computer Science</i> , 2020 , 833, 107-119	1.1
5	Range Majorities and Minorities in Arrays. <i>Algorithmica</i> , 2021 , 83, 1707-1733	0.9
4	Permutations103-119	
3	Grids347-394	
2	Dynamic Structures450-500	
1	Recent Trends501-548	